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Abstract

Parameter uncertainties and measurement outliers unavoidably exist in real linear systems. Such
uncertainties and outliers make the true joint state-measurement distributions (induced by the
true system models) deviate from the nominal ones (induced by the nominal system models) so
that the performance of the optimal state estimators designed for the nominal models becomes
unsatisfactory or even unacceptable in practice. The challenges are to quantitatively describe
the uncertainties in the models and the outliers in the measurements, and then robustify the
estimators in a right way. This thesis studies a distributionally robust state estimation framework
for linear systems subject to parameter uncertainties and measurement outliers. It utilizes a
family of distributions near the nominal one to implicitly describe the uncertainties and outliers,
and the robust state estimation in the worst case is made over the least-favorable distribution.
The advantages of the presented framework include: 1) it only uses a few scalars to parameterize
the method and does not require the structural information of uncertainties; 2) it generalizes
several classical filters (e.g., fading Kalman filter, risk-sensitive Kalman filter, relative-entropy
Kalman filter, outlier-insensitive Kalman filters) into a unified framework. We show that the
distributionally robust state estimation problem can be reformulated into a linear/nonlinear
semi-definite program and in some special cases it can be analytically solved.

Likewise, uncertainties unavoidably exist in modeling for nonlinear systems: process dynamics,
measurement dynamics, and/or noises statistics might be uncertain. As a result, nominally
optimal state estimators become deteriorated or even unsatisfactory, and robust filters insensitive
to modeling uncertainties have to be designed. Since uncertainties in nominal models make
prior state distributions and likelihood distributions uncertain as well, this thesis proposes
a distributionally robust particle filtering framework for nonlinear systems under modeling
uncertainties. Specifically, we use worst-case prior state distributions (near the nominal prior
state distributions) to generate prior state particles and/or determine their weights. Similarly,
worst-case likelihood distributions (near the nominal likelihood distributions) are used to evaluate
the worst-case likelihoods of prior state particles given measurements. The "worst-case" scenario
is quantified by entropy of distributions, and maximum entropy distributions are found in balls
centered at nominal distributions with radii defined by statistical similarity measures such as
moments-based similarity, Wasserstein distance, and Kullback-Leibler divergence. We prove
that Gaussian approximation filters (e.g., unscented/cubature Kalman filter) are distributionally
robust in the sense that they use maximum entropy prior state distributions and maximum
entropy likelihood distributions. Moreover, we show that the distributionally robust particle
filtering framework provides a likelihood evaluation method for general nonlinear measurement
dynamics with non-additive and non-multiplicative measurement noises. At last, measurement
outlier treatment strategies in the distributionally robust particle filtering framework is discussed.
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Chapter 1
Introduction

1.1 Background

Research on state estimation for both linear and nonlinear systems is lastingly active in several
academic communities such as target tracking [1,2], power systems [3], reliability engineering [4],
geodesy [5], sensor network [6], control and automation (e.g., robotics [7]), and astronautics [8].
State estimation problems aim to estimate unknown and unobservable system states based
on known system dynamics and observable system outputs. From the viewpoint of statistics,
state estimation problems are statistical inference problems where hidden (i.e., unobservable)
quantities are inferred from observable quantities, and the joint distribution of hidden variables
and observable variables is defined by linear/nonlinear system dynamics. Some real-world
examples are listed below.

1) In robotics and aeronautics, people might be concerned with obtaining the real-time position
and velocity of a moving robot/airplane. The position and velocity may not be directly
observable for trackers but they can be inferred out from observable information from radars
such as real-time distances, pitch angles, and azimuth angles [2].

2) In reliability engineering, people might be interested in estimating the remaining useful life
(RUL) of an industrial plant or product. In this case, the RUL is not directly observable but
it can be inferred out from observable information from sensors such as degradation data [4].

3) In supply chain management, estimating (or forecasting) the future demand based on the
available information might be of high interest. Under this circumstance, the demands in the
(short) future are unknown, but they can be inferred out (not exactly but to some extent)
by leveraging some observable market signals (e.g., expected weather condition, early order
placement by customers) from both the retailer and the supplier [9, 10].

To be specific, we take a motivating and simple example in robotics to formally explain the state
estimation problem; see Figure 1.1 for an illustration.

Suppose the position of a moving robot at the discrete time k is pk, and at the time k − 1 is

1
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Figure 1.1: A 2-dimensional robot tracking problem. We aim to infer the real-time positions
(sometimes and also velocities) of the moving robot based on some observable information from
a sensor. The real-time position of the robot at the time k is pk := [p1,k, p2,k]

⊤ where p1,k and
p2,k denote the position in the horizontal coordinate and the vertical coordinate, respectively.
At any time k, the exact value of pk and the actual trajectory of the robot are unknown to us
and the sensor. However, the sensor can capture the noisy value of pk, or the noisy values of
some transforms of pk. In this example, the sensor is placed at the origin and its position is
[0, 0]⊤. The distance from the robot to the sensor is termed the range r, while the angle between
the line-of-sight and the horizontal line is termed the azimuth α.

pk−1. According to basic kinematics, we have
pk = pk−1 + Tυk−1 +

T 2

2
ak−1,

υk = υk−1 + Tak−1,

where T denotes the sampling time between the time instant k − 1 and the time instant k,1

υk−1 is the average velocity in-between the time instants k − 1 and k, and ak−1 is the average
acceleration during the same time slot; for all k, υk (resp. ak) is a 2× 1 vector where the first
element denotes the velocity (resp. acceleration) in the horizontal axis while the second element
the velocity (resp. acceleration) in the vertical axis. However, note that pk, pk−1, υk−1, and
ak−1 are all unknown to us, for every k. A compact form can be written as pk

υk

 =

 1 T

0 1


 pk−1

υk−1

+

 T 2

2

T

ak−1.

Since we are mainly concerned with inferring pk and υk, we may use a random vector wk−1

with assumed-known distribution to model the unknown acceleration ak−1. This gives the

1Different sensors may have different data-updating rate. For example, one may capture measurements once
per T = 0.1 seconds but another may capture measurements once per T = 0.25 seconds.
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process dynamics equation (also known as the state evolution equation or the state transition
equation)

xk =

 1 T

0 1

xk−1 +

 T 2

2

T

wk−1, (1.1)

where xk := [p⊤
k ,υ

⊤
k ]

⊤ and xk is termed the state vector; wk−1 is the process noise vector.

If the sensor can provide the noisy measurement of pk (i.e., the sensor is a positioning device
but it has positioning errors), we have

yk = pk + vk,

where the random vector yk is termed the measurement vector, and the random vector vk

is used to model the measurement error of the sensor and is termed the measurement noise
vector. Hence, the measurement dynamics equation (also known as the state measurement
equation or the state observation equation) is given as

yk =

[
1 0

] pk

υk

+ vk

=

[
1 0

]
xk + vk.

(1.2)

Since both the process dynamics (1.1) and the measurement dynamics (1.2) are of linear forms,
the system defined by (1.1) and (1.2) is called a linear system. In general, a linear system is
compactly given as 

xk = Fk−1xk−1 +Gk−1wk−1,

yk =Hkxk + vk,

(1.3)

where Fk−1, Gk−1, and Hk are termed the state matrix, the noise-driven matrix, and the
observation matrix, respectively. In the contexts of the robot tracking problem above, we
specifically have

Fk−1 :=

 1 T

0 1

 , Gk−1 :=

 T 2

2

T

 , and Hk :=

[
1 0

]
.

If, alternatively, the sensor can provide the noisy measurements of the range rk and the azimuth
αk, we have 

rk =
√

p21,k + p22,k + v1,k,

αk = arctan
(
p2,k
p1,k

)
+ v2,k,
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where the random variable v1,k is used to model the ranging error and the random variable
v2,k is used to model the heading error. Let yk := [rk, αk]

⊤ be the measurement vector and
vk := [v1,k, v2,k]

⊤ the measurement noise vector, the measurement dynamics equation is given as

yk =


√
p21,k + p22,k

arctan
(
p2,k
p1,k

)
+ vk. (1.4)

Since (1.4) is of a nonlinear form, the system defined by the process dynamics (1.1) and the
measurement dynamics (1.4) is called a nonlinear system. In general, if either (resp. both)
the process dynamics equation or (resp. and) the measurement dynamics equation is (resp. are)
nonlinear, the system is called a nonlinear system. A generic nonlinear system is compactly
given as 

xk = fk(xk−1,wk−1),

yk = hk(xk,vk),

(1.5)

where fk(·, ·) and hk(·, ·) are termed the process dynamics function and the measurement
dynamics function, respectively. In the contexts of the robot tracking problem above, we
specifically have

xk = fk(xk−1,wk−1)

:=

 1 T

0 1

xk−1 +

 T 2

2

T

wk−1,

where fk(·, ·) degenerates to a linear form and

yk = hk(xk,vk)

:=


√
p21,k + p22,k

arctan
(
p2,k
p1,k

)
+ vk,

where hk(·, ·) is of a nonlinear form.

For a linear or nonlinear system, the process dynamics and the measurement dynamics are
collectively referred to as the system dynamics, which is also known as the system model.

As the time proceeds, we can collect the measurements in the past: the measurement set
Yk := (y1,y2, ...,yk) is available. We aim to find an estimator x̂k of xk, which is a function of
the random sequence Yk, such that the mean square estimation error is minimized;

x̂k := argmin
ϕ

TrE[ϕ(Yk)− xk][ϕ(Yk)− xk]
⊤, (1.6)
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over all Borel-measurable functions ϕ, where the expectation is taken over the joint distribution
of (xk,Yk).

In this context, the random vector ϕ(Yk), which is σ(Yk)-measurable,2 is termed a state
estimator or a filter, and the optimal one is called the optimal state estimator or the optimal
filter. When the measurement set Yk has one realization Yk := (y1,y2, ...,yk), the deterministic
value x̂k := ϕ(Yk) is termed a state estimate of xk, and the optimal one is called the optimal
state estimate.

Instead of only providing a single estimate x̂k for xk, we may also be interested in finding a
probability density function pxk|Ik(xk|Ik) conditioned on all the available information Ik till the
time k. Intuitively, the density pxk|Ik(xk|Ik) describes the relative likelihood that xk takes the
specific value xk. This gives the Bayesian estimation setting [11,12].3 In the state estimation
contexts, Ik explicitly stands for all the past measurements Yk. Specifically, we aim to find
the filtered state distribution (also known as the posterior state distribution) of xk, i.e.,
pxk|Yk

(xk|Yk), through the Bayes’ rule:

pxk|Yk
(xk|Yk) ∝ pyk|xk=xk

(yk|xk) · pxk|Yk−1
(xk|Yk−1), (1.7)

where pyk|xk=xk
(yk|xk) is termed the conditional measurement distribution given xk (also known

as the likelihood distribution given xk), and pxk|Yk−1
(xk|Yk−1) the predicted state distribution

(also known as the prior state distribution). When pxk|Yk
(xk|Yk) is available, the optimal

estimator that solves (1.6) is the posterior mean [11]:

x̂k :=

∫
xk · pxk|Yk

(xk|Yk)dxk.

Although theoretically attractive, the posterior mean is not always easy to obtain because the
posterior density is usually hard to compute [13]; cf. also [14]. Hence, approximation techniques
for computing the posterior mean or the posterior density function such as Gaussian filters [13],
varitional Bayesian inference [15], and particle filters [16] must be studied. Alternatively, one
may also obtain the maximum a-posteriori (MAP) estimator of xk:

x̂k := argmax
xk

pxk|Yk
(xk|Yk).

However, the optimality in the MAP sense is not considered in this thesis, and we only focus on
the optimality in the minimum mean square error sense defined in (1.6). This is because the
latter is the most popular one in the state estimation community and also in the applied statistics
community. If the closed-form expression of pxk|Yk

(xk|Yk) is hard to derive, we may leverage
the sequential Monte Carlo method to use samples to approximate involved distributions. This

2σ(Yk) denotes the σ-algebra generated by Yk.
3For differences between Bayesian estimation and Frequentist estimation, see Appendix A.5.
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gives the particle filter and each sample is termed a particle [17, Section 13.3.4].

For the robot tracking problem above, people usually use a random vector wk with assumed-
known distribution (usually a Gaussian distribution) to model the unknown acceleration ak

for every k, and Ewkw
⊤
j = 0 (i.e., uncorrelatedness) for every k ̸= j [2]. This Gaussianity and

uncorrelatedness assumption is hardly exact in practice because a true robot never maneuvers
with a non-smooth trajectory. (Note that under the Gaussianity and uncorrelatedness assumption
of acceleration, the expected trajectory of the robot, i.e., the continuous-time stochastic process
p(t) from which the discrete-time process {pk}k=1,2,... is sampled, is non-smooth.4) In addition,
the measurement noise vk is usually assumed to be Gaussian with mean 0 and covariance
Rk [18,19]. However, in reality, the measurement noise vk may not exactly follow a Gaussian
distribution or the noise statistics are not guaranteed to be exactly the same as 0 and Rk [20,21].
Also, due to clock error, the sensor’s true sampling time might be different from the nominal
sampling time T so that the nominal state matrix, i.e.,

Fk =

 1 T

0 1


is just an approximation to the true state matrix. Hence, the nominal linear system model
(1.1) and (1.2), and the nominal nonlinear system model (1.1) and (1.4) might be inexact, or
uncertain. More specifically, the uncertainty in modeling wk and Fk leads to the uncertainty
in the process dynamics (1.1), and the uncertainty in modeling vk induces the uncertainty in
the measurement dynamics (1.2) and (1.4). Formally, a nominal model O =M(I) is said to be
uncertain if it is not guaranteed to be exactly the same as the true governing model O =M0(I),
where O denotes the output and I the input. Other equivalent terms to "uncertain model" that
are widely used include "mismatched model", "deviated model", and "perturbed model", etc.
Possible cases are as follows.

1) Parameter Uncertainty. Suppose the nominal model O =M(I;β) is parameterized by β.
If the model type is exact and only the parameter β is uncertain, the model uncertainty is
reflected by "parameter uncertainty". In the state estimation contexts, a possible example is
that the true system model is guaranteed to be linear and the noises are guaranteed to be
Gaussian, but we do not exactly know the noise statistics.

2) Type Uncertainty. In the state estimation contexts, an example might be the case that the

4Let t denote the continuous time. We have an Ito process dp(t)
dt

dυ(t)
dt

 =

 0 1

0 0

 p(t)

υ(t)

+

 0

1

w(t),

where w(t) denotes a continuous-time white Gaussian process. The discrete-time system (1.1) is sampled from
this continuous-time system.
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true system model is nonlinear but we might use a linear nominal model. Another example
might be the case that the true system model is known to be the one among candidate models.
However, at one time instant, we do not exactly know which candidate model is governing
the true plant [22,23]. In this case, one may also call it "mode uncertainty".

3) Measurement Outlier. This is a special case of the type uncertainty. We discuss the
measurement outlier problem separately because it is extremely important in practice. If
outliers unexpectedly exist in measurements, the true measurement distribution deviates
from the nominal measurement distribution. In the linear-system state estimation contexts,
a possible example is that the nominal measurement noise model is Gaussian, whereas the
true measurement noise model is fat-tailed (e.g., Laplacian, Student’s t). In other words, the
type of noise distribution is uncertain.

The list is not exhaustive, however, most common in practice.

1.2 Problem Statements and Methodological Motivations

For linear systems, if process and measurement noises are Gaussian and parameters involved are
exact, it is well known that the reputed Kalman filter gives the optimal solution in the sense of
the following: (a) the linear unbiased minimum variance estimation [18]; (b) the least/minimum
mean square error estimation [24–26]; (c) the regularized least square estimation [27]; (d) the
Bayesian a posteriori mean estimation of state conditioned on measurement process [11, 25]
(also recall Sherman’s theorem); (e) the orthogonal projection of the state onto the stochastic
Hilbert space spanned by the corresponding innovation process (or equivalently, spanned by
the measurement process) generated from the linear system models [24,28]; or (f) the optimal
state estimate that reaches the posterior Cramer-Rao lower bound [26]. However, for many
real problems in engineering, the nominal linear system models usually suffer from nontrivial
and uncertain modeling errors, e.g., uncertain channel characteristics in wireless communication
[29, 30], unknown maneuvers in target tracking [31, 32], uncertain attacks/faults in sensor
networks [33], unknown noise statistics of sensors [34], and outliers in ultrawideband (UWB) range
measurements [35]. Unfortunately, the Kalman filter is sensitive to possible modeling uncertainties
and measurement outliers: they may significantly deteriorate the performance of the Kalman
filter [20] or even cause divergence [18,36]. Hence, uncertainty-aware state estimation solutions
for linear systems need to be studied. For nonlinear systems, typical treatment frameworks
include: 1) linearization methods, e.g., extended Kalman filters [37] and Takagi–Sugeno fuzzy
approximation [38], 2) Gaussian approximation methods including Unscented Kalman filters [39],
Cubature Kalman filters [40], and Ensemble Kalman filter (EnKF) [41], etc., and 3) approximated
Bayesian inference methods such as variational Bayesian inference [23,42–44] and sequential Monte
Carlo [16, 45–47]. Linearization methods and Gaussian approximation methods are doubted
for their incapability of capturing severe nonlinearities, while approximated Bayesian inference
methods are criticized for their high computational burdens. However, continuous improvement
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in computation powers of modern microprocessors/computers is reducing such criticisms on
approximated Bayesian inference methods and encouraging signal processing practitioners to
implement these methods for higher estimation accuracy. On this basis, sequential Monte
Carlo methods (i.e., particle filters) are of more interest because solving functional optimization
problems in variational Bayesian inference is theoretically challenging and therefore additional
assumptions, e.g. parameterized function representation and mean field approximation [15], are
required. Over the years, tremendous efforts have been made to perfect particle filters, especially
in designing efficient sampling and resampling techniques [45,48–50]. However, virtually all of the
past literature assume that the process dynamics and measurement dynamics are accurate. This
assumption is suspect because uncertainties are unavoidable in modeling; i.e., nominal models
designed by scientists/engineers are not guaranteed to be exactly the same as the true governing
models. Such uncertainties may be incurred by oscillating but unknown values of elements in
circuits (e.g., resistors/inductors influenced by thermal/electromagnetic noises), by uncontrollable
factors in model identification (e.g., numerical errors in parameter estimation; mismatched model
assumptions), etc. Therefore, uncertainty-aware particle-based state estimation solutions for
nonlinear systems have to be studied.

There are two philosophies in statistics, optimization, and also engineering to handle uncertainties.
The one is to reduce such uncertainties by, e.g., jointly estimating the true values of the uncertain
factors whenever it is possible [22,51–54], whereas the other is to tolerate the uncertainties by,
e.g., designing robust solutions that are insensitive to them [55–59]. The former is referred to
as adaptive methods, and the latter is termed robust methods. Specifically, in the state
estimation literature, adaptive methods include unknown-input Kalman filters [53], adaptive
Kalman filters [54], etc., while robust methods contain, e.g., robust Kalman filters [27,29] and
distributionally robust state estimators [57, 58]. Since not all uncertain factors can be correctly
characterized, quantitatively modeled, and exactly estimated, sometimes and also generally,
robust solutions are attractive. Distributionally robust optimization theory,5 an offspring of
robust statistics and optimization theories, is a mainstream framework dealing with modeling
uncertainties. It is currently popular in operations research [62,63], machine learning [56,64],
systems control [65], to name a few. When some statistical information of uncertain factors are
known in prior, distributionally robust optimization methods are preferable over classical robust
optimization methods which only take into account possible values that the uncertain factors can
take; this is because distributional information can be utilized to counteract conservativeness, to
some extent [66].

In this thesis, for linear systems, we study a distributionally robust state estimation framework
against parameter uncertainties and measurement outliers. It utilizes a family of distributions
near the nominal one to implicitly describe the uncertainties and outliers, and the robust state

5The term "distributional" means probability-distribution-related. One should differentiate it with another term
"distributed" in engineering literature; cf. [60,61]. For more information of distributionally robust optimization
theory, see Appendix A.1.
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estimation in the worst case is made over the least-favorable distribution. Simultaneously, for
nonlinear systems, distributionally robust optimization theory is leveraged to robustify particle
filters; this is because particle filters are Bayesian statistical methods, and therefore, natural
to be discussed in "distributional" contexts. Specifically, when a nominal process dynamics is
not guaranteed to be exactly the same as the true one, we argue that the associated nominal
prior state distribution, which is represented by weighted particles that are generated from this
nominal process dynamics, is different from the true prior state distribution as well. Therefore,
we propose to find the worst-case distribution near the nominal prior state distribution, and use
this worst-case distribution as a surrogate to generate new prior state particles and/or update
their weights. On the other hand, when the measurement dynamics is inexact, the likelihoods
of the prior state particles cannot be exactly evaluated either. Likewise, we suggest finding
worst-case likelihood distributions for prior state particles to evaluate their worst-case likelihoods
at given measurements.

1.3 Contributions

The contributions of this thesis can be summarized as follows.

a) For linear systems,

1) We propose a distributionally robust state estimation framework against both parameter
uncertainties and measurement outliers. It uses a family of distributions to describe the
parameter uncertainties and measurement outliers, and the robust state estimation is
made over the least-favorable distribution. For details, see Sections 2.2 and 2.3.

2) We show that the proposed framework generalizes several existing estimation methodolo-
gies, including the fading Kalman filter, the Student’s t Kalman filter, the risk-sensitive
Kalman filter, the M-estimation-based Kalman filters, the relative-entropy Kalman fil-
ter, the τ -divergence Kalman filter, and the Wasserstein Kalman filter. For details, see
Theorem 12 (and Theorem 10).

3) We show that the proposed distributionally robust state estimation problem can be
reformulated into a linear/nonlinear semi-definite program and in some special cases it
can be analytically (i.e., efficiently) solved. For details, see Theorems 1, 2, 6, and 7.

4) Comprehensive comparisons between the newly proposed distributionally robust estimation
framework and state-of-the-art frameworks are made. For details, see Sections 2.2.5 and
2.3.4.

b) For nonlinear systems,

1) We propose a robustification scheme for particle filters. Specifically, in implementing a
particle filter, we use worst-case distribution (i.e., maximum entropy distribution) near
the nominal prior state distribution to generate new prior state particles and/or update
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their weights, and use worst-case distribution (i.e., maximum entropy distribution) near
the nominal likelihood distribution to evaluate the worst-case likelihoods of these prior
state particles. For details, see Sections 3.1 and 3.3.

2) We derive maximum entropy distributions in balls centered at nominal distributions with
radii defined by the Wasserstein distance and the Kullback-Leibler divergence. For details,
see Sections 3.2.2 and 3.2.3, especially Theorems 15, 16, 17, and 18.

3) We show that this robustification scheme serves yet a new resampling strategy against
particle degeneracy. In detail, maximum entropy distributions tend to have uniform
probability for each support point, and therefore, in particle filter, particles tend to have
equal weights. For details, see Section 3.3.1, especially Eqs. (3.38) and (3.39).

4) We show that the proposed robustification scheme offers a universal likelihood evaluation
method for prior state particles when measurement dynamics is driven by non-additive
and non-multiplicative noises. For details, see Section 3.3.2, especially Methods 4 and 5.

5) We illustrate that Gaussian approximation state estimators are distributionally robust.
For details, see Section 3.2.1, especially Corollary 4.

6) We provide a measurement outlier identification and treatment method for particle filters.
For details, see Section 3.3.3.

1.4 Notations

Random quantities are denoted by Roman type symbols while deterministic quantities are
denoted by Italic type symbols. We use boldface lowercase symbols for vectors and boldface
uppercase symbols for matrices. For example, x denotes a deterministic scalar, x a deterministic
vector, and X a deterministic matrix; x denotes a random scalar, and x denotes a random vector.
Suppose x is a continuous random vector on the probability space (Ω,F ,P) and x takes value on
Rn, where Ω denotes the sample space, F the σ-algebra on Ω, and P the probability measure on
(Ω,F). The probability measure on (Rn,B(Rn)) induced by x, also called the distribution or the
law of x, is denoted as Px, where B(Rn) denotes the Borel σ-algebra on Rn. Let Fx(·) and px(·)
denote the cumulative distribution function (CDF) and the probability density function (PDF) of
x, respectively; when it is clear in the context, we suppress the subscript x for simplicity. Let Ex
denote the expectation of the random vector x. Suppose y is another continuous random vector
on the probability space (Ω,F ,P) and y takes value on Rm. Let Px|y denote the conditional
distribution of x given y, which is specified by Px|y(B|y),∀B ∈ B(Rn), ∀y ∈ Rm, where y is
a given realization of y. Let E(x|y) denote the conditional expectation of x given y. Note
that E(x|y) is a σ(y)-measurable random vector. However, whenever y = y is specified, E(x|y)
becomes deterministic. The collection of all probability measures on (Rd,B(Rd)) is denoted
as P(Rd). Supposing P,Q ∈ P(Rd), we use D(P,Q) to define a possible statistical similarity
measure (e.g., Wasserstein distance, Kullback–Leibler divergence) between P and Q. For every
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integer-valued discrete time index k, let Yk := (y1,y2, ...,yk) denote a collection of random
vectors, and Yk := (y1,y2, ...,yk) a possible realization of Yk (i.e., a trajectory of the stochastic
process {yk}k=1,2,...). Let δx0(x) be the Dirac delta function: δx0(x) = ∞ if x = x0 and 0

otherwise;
∫
δx0(x)dx = 1. For a given integer N , we let [N ] denote the running index set

and [N ] := {1, 2, 3, ..., N}. Let Nd(µ,Σ) define the d-dimensional Gaussian distribution with
mean vector µ and covariance matrix Σ. Let an arbitrary d-dimensional distribution with mean
vector µ and covariance matrix Σ be denoted as Dd(µ,Σ). Let I and 0 denote the identity
and the null matrices with appropriate dimensions, respectively. We use M⊤ to denote the
transpose of the matrix M , and Tr [M ] its trace when M is square. Let Sd denote the set of all
d-dimensional symmetric matrices in Rd×d, and Sd+ (resp. Sd++) of all d-dimensional symmetric
positive semi-definite (resp. positive definite) matrices in Sd. If A,B ∈ Sd, A ⪰ B (resp.
A ≻ B) indicates that A−B ∈ Sd+ (resp. A−B ∈ Sd++). If S ∈ Sd+, let S1/2 be a square root
of S (i.e., S1/2S1/2 = S). To avoid notational clutter, an ellipsis in a bracket means a copy of
the content in the immediately previous bracket (e.g., [E ][· · · ] := [E ][E ] when an expression E is
long). We use ⟨A,B⟩ := Tr

[
A⊤B

]
to denote the trace inner product of two matrices A and B.

We use ∥a∥ :=
√
a⊤a (resp. ∥a∥W :=

√
a⊤Wa) to denote the (resp. weighted) Euclidean norm

of a. In this thesis, all vectors are column vectors by default.



Chapter 2
State Estimation for Linear Systems

2.1 Problem Formulation

Motivated by (1.3), we are concerned with estimating the hidden (i.e., unobservable) state vector
xk of a linear Markov system [18,19,24]

xk = Fk−1xk−1 +Gk−1wk−1,

yk =Hkxk + vk,

(2.1)

where k is the discrete time index; xk ∈ Rn is the state vector; yk ∈ Rm is the measurement
vector; wk−1 ∈ Rp, vk ∈ Rm are the process noise and measurement noise, respectively. For
every k, xk, yk, wk, and vk are assumed to have finite second moments: this is a standard
assumption in applied statistics to guarantee the existence of an estimator; see, e.g., [67, Chap.
4], [68, Chap. 11].

The nominal system (2.1) defines two discrete-time stochastic vector processes {xk} and {yk},
where k = 1, 2, · · · . Therefore, mathematically, we aim to estimate the unobservable stochastic
process {xk} based on an observable stochastic process {yk}. The more general setting is the
state inference problems for hidden Markov processes [12].

Let HYk
denote the collection of all possible linear combinations of {1,Yk} and H′

Yk
denote the

collection of all second-moment-finite functions of Yk. Specifically,

HYk
:=

{
Bk1+

k∑
i=1

Aiyi

∣∣∣∣∣Bk,A1, . . . ,Ak ∈ Rn×m

}
.

Meanwhile,

H′
Yk

:=


ϕ(y1, ...,yk)

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ : Rm × · · · × Rm︸ ︷︷ ︸
k

→ Rn

ϕ is Borel-measurable∫
Rm×k

[ϕ(Yk)]
⊤[ϕ(Yk)]dPYk

(Yk) <∞


.

12
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Note that ϕ might be nonlinear. Intuitively, HYk
defines all linear estimators whereas H′

Yk
can

offer nonlinear estimators. Note also that HYk
⊂ H′

Yk
. One can easily verify that both HYk

and
H′

Yk
are convex because they are closed under linear operations. In addition, both HYk

and H′
Yk

are stochastic Hilbert spaces where the inner product between ϕ1 and ϕ2 is defined by [28,67]∫
ϕ⊤
1 ϕ2dPYk

(Yk), ∀ϕ1,ϕ2 ∈ HYk
,

or ∫
ϕ⊤
1 ϕ2dPYk

(Yk), ∀ϕ1,ϕ2 ∈ H′
Yk
.

If the linear system (2.1) satisfies the following three properties [18,19,24]:

P1) x0 ∼ Nn(x̄0,M0); For every k, wk ∼ Np(µ
w
k ,Qk), and vk ∼ Nm(µvk,Rk);

P2) For every j ̸= k, wk and x0 are uncorrelated, so are vk and x0, wk and wj , and vk and vj

(viz., ∀j ̸= k, Ewkx
⊤
0 = 0, Evkx

⊤
0 = 0, Ewkw

⊤
j = 0, and Evkv

⊤
j = 0). For every k, j, vk

and wj are uncorrelated (viz., ∀k, j, Evkw
⊤
j = 0);

P3) For every k, µwk , µvk, Qk, Rk, Fk−1, Gk−1, and Hk are exactly known (typically µwk and
µvk are zero-valued),

the canonical Kalman filter gives the optimal state estimate for the linear system (2.1) in the
sense of minimum mean square error; for technical details, see Appendix A.2. Briefly speaking,
supposing at the time k the nominal joint state-measurement distribution defined by the nominal
system model (2.1) is P̄xk,Yk

, we would like to solve the following optimization problem1

min
ϕ∈H′

Yk

TrE[xk − ϕ(Yk)][xk − ϕ(Yk)]⊤, (2.2)

where the expectation is taken over P̄xk,Yk
and ϕ(·) is referred to as an estimator (the optimal

one is called the optimal estimator). The optimal estimator of xk in this minimum mean square
error sense is E(xk|Yk) ∈ H′

Yk
. In particular, if P̄xk,Yk

is jointly Gaussian, E(xk|Yk) is of a linear
form, i.e., E(xk|Yk) ∈ HYk

. Nice properties (e.g., linearity, Gaussianity) of the nominal system
(2.1) produce a beautiful solution to (2.2), i.e., the Kalman filter. However, in general, problem
(2.2) is not always easy to solve if the involved distribution P̄xk,Yk

is not Gaussian [69].

As elucidated in Introduction 1.1, the nominal model (2.1) might be uncertain in practice.
To be specific, the Kalman’s basic assumptions P1)-P3) might be violated individually or in
batch form: one of P1), P2), and P3), or any two of them, or all of them, may be breached
in practical state estimation problems. The solutions are standard for the case when the
assumption P2) is breached, for example, correlated/colored Kalman filters [18,19]. (However,
Ewkx

⊤
0 = 0 and Evkx

⊤
0 = 0 are always required.) Thus, in this thesis, we consider only model

1For more information of matrix-type objective function, see Appendix A.3.
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uncertainties when P1) and/or P3) are/is violated for the linear system (2.1). Namely, possible
parameter uncertainties and measurement outliers will be taken into particular consideration.
The parameter uncertainties mean that the value(s) of µwk , µvk, Qk, Rk, Fk−1, Gk−1, and/or
Hk might be uncertain [70], while the measurement outliers might be due to non-Gaussian,
fat-tailed noise distributions of wk and/or vk [21, 71].

There is a large body of literature on coping with uncertainties in the parameters and outliers in
the measurements, leading to two streams of research. The first stream focuses on parameter
uncertainties in state estimation of linear systems. The earliest solutions include the fading (a.k.a.
fading-memory) Kalman filter [36,72], the finite horizon memory filters [73, Section V] especially
the UFIR filter [74], the risk-sensitive (a.k.a. exponential-cost) Kalman filter [73, Section IV], [75],
the set-valued Kalman filter [76], the H∞ filter [73, 77], the adaptive Kalman filter [78–81],
and their extensions. Comprehensive reviews and comparisons of these methods can be found
in [27, 70, 72, 74, 79]. Later solutions contain the multiple-model methods which handle the
case when the system modes are assumed to be multiple [82, 83], and the unknown-input filters
designed for systems that have uncertain inputs [53, 84–86]. Later on, robust filters that are
insensitive to parameter uncertainties are introduced. They try to minimize/limit the worst-case
estimation error and the uncertainties are modeled in different ways. Remarkable frameworks
include the Sayed’s norm-constrained filter [27], the stochastic-parameter filter [29,87,88], the
relative-entropy Kalman filter [89], the τ -divergence Kalman filter [90], and the Wasserstein
Kalman filter [91]. The second stream of research deals with outlier-insensitive state estimation.
The earliest solution is the Gaussian-sum Kalman filter which approximates non-Gaussian noise
distribution by a Gaussian sum [20,92]. In order to lower the computation burden, two categories
of methods are introduced afterwards. The first category uses heavy-tailed distributions for
the noises which are inherently outlier-aware [21, 93–96]. The second category contains the
M-estimation-based2 Kalman filters [71, 97–99]. They are designed to identify outliers and then
take actions to remove/attenuate them, by leveraging various influence functions [55,100]. A
notable extension for M-estimation-based Kalman filtering is introduced in [101], which jointly
estimates an unknown-input existing in both the system dynamics and the measurement dynamics.
However, two issues exist in literature addressing parameter uncertainties and measurement
outliers. First, for state estimation problems under parameter uncertainties, typical robust
solutions [27,29,87,88] and adaptive solutions [53,84–86] require some structural information
of uncertainties so that the uncertainties can be gracefully structured and/or parameterized.
However, in practice, the information of uncertainties might be scarce, which denies the possibility
to implement existing uncertainty-aware filters, e.g., [27,29,53]. Second, up to now, there does
not exist a robust state estimation method that is able to simultaneously address both parameter
uncertainties and measurement outliers, and a unified viewpoint to understand the various
existing state estimation methods is lacking. To this end, motivated by the distributionally
robust optimization theories, this thesis studies distributionally robust state estimation (DRSE)

2For strict definition of "M-estimation-based", see Appendix A.5.
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solutions. We will later show that the DRSE framework can fix the two issues aforementioned.

If the underlying system dynamics (i.e., the true model) deviates from the nominal model (2.1),
the true joint state-measurement distribution Pxk,Yk

will more or less diverge from the nominal
P̄xk,Yk

. In this scenario, we aim to find a robust state estimation solution that is insensitive
to the deviation. Inspired by the distributionally robust optimization theory, we can write the
distributionally robust counterpart of (2.2) as

min
ϕ∈H′

Yk

max
P∈Fxk,Yk

(θ)
TrE[xk − ϕ(Yk)][xk − ϕ(Yk)]⊤, (2.3)

where the expectation is taken over a possibly true Pxk,Yk
and

Fxk,Yk
(θ) :=

{
Pxk,Yk

∈ P(Rn × Rm×k)
∣∣D(Pxk,Yk

, P̄xk,Yk
) ≤ θ

}
is the associated ambiguity set constructed around the nominal distribution P̄xk,Yk

with radius
of θ. This worst-case optimization problem can be treated as a zero-sum statistical game [102]
where the two adversarial players are the statistician who chooses the optimal estimator and
nature that chooses the uncertain/hostile distribution (i.e., one tries to lower the cost but the
other to improve).

Nevertheless, the state estimation problem is an online (i.e., time-series) problem and the optimal
estimator operates along the discrete time in a recursive way as the time proceeds [28]. This
is because the measurements y1, y2, ..., yk arrive in sequence one by one, not in block as Yk.
Hence, at the time k, we expect to handle only one measurement vector yk rather than a bulk of
measurements Yk. This also helps to reduce the calculation complexity at each time step. Thus,
we instead try to solve a time-incremental [89] (i.e., one-time-step) alternative problem

min
ϕ∈H′

yk

max
P∈Fxk,yk|Yk−1

(θ)
TrE

{
[xk − ϕ(yk)][xk − ϕ(yk)]

⊤
∣∣∣Yk−1

}
, (2.4)

where the expectation is taken over Pxk,yk|Yk−1
and the ambiguity set

Fxk,yk|Yk−1
(θ) :=

{
Pxk,yk|Yk−1

∈ P(Rn × Rm)
∣∣D(Pxk,yk|Yk−1

, P̄xk,yk|Yk−1
) ≤ θ

}
contains all possibly true conditional joint state-measurement distribution given the previous
measurement sequence Pxk,yk|Yk−1

, and is constructed around the nominal conditional joint
state-measurement distribution given the previous measurement sequence P̄xk,yk|Yk−1

. Note that
in (2.4), the space of ϕ(·) is only defined by yk instead of Yk. In order to solve (2.4), we need to:
1) design proper forms of the associated ambiguity set Fxk,yk|Yk−1

(θ) so that both parameter
uncertainties and measurement outliers can be taken into consideration, and 2) find the explicit
optimization equivalent(s) of (2.4) so that it can be efficiently solved.

In order to make the problem (2.4) tractable and also follow the typical problem settings of
the state estimation literature, we assume that the nominal conditional prior state distribu-
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tion P̄xk|Yk−1
and the nominal measurement noise distribution P̄vk

are Gaussian. (Therefore,
P̄xk,yk|Yk−1

would be Gaussian as well.) In other words, no matter what the true distributions
P̄xk|Yk−1

and P̄vk
are, we use Gaussian distributions to approximate them. The Gaussian

approximation is popular in the state estimation community to reduce the computational com-
plexity, especially for nonlinear systems. For instance, recall the cubature Kalman filter [40],
the unscented Kalman filter [39], the Ensemble Kalman filter [41], etc. Besides, the Gaussian
distribution has the following properties, which adapt into our worst-case robust perspective.

1) The Gaussian distribution admits maximum entropy (i.e., maximum degree of indeterminacy)
among all distributions with given/fixed first- and second-order moments [103].

2) Concerning a linear measurement system y =Hx+v, if the state x is Gaussian, then among
all noise distributions with bounded variance for v, the Gaussian minimizes the mutual
information between the state x and the measurement y (i.e., the dependence between x and
y is minimized). Namely, the Gaussian noise makes the measurement least informative to
estimate the state [69,104].

3) Concerning the linear measurement system above, if the noise v is Gaussian, then among all
state distributions with bounded variance for x, the Gaussian maximizes the minimum mean
square error. Namely, the Gaussian state is most difficult to estimate [69,105].

The third reason to make the Gaussianity assumption is that the Wasserstein metric and the
Kullback–Leibler divergence for Gaussian distributions admit closed-form expressions.

The structure of the ambiguity set Fxk,yk|Yk−1
(θ) significantly matter. In fact, what types of

distributions are included in Fxk,yk|Yk−1
(θ) implicitly admits different types of model uncertainties.

To be specific, when we handle measurement outliers in the distributionally robust state
estimation framework, the ambiguity set Fxk,yk|Yk−1

(θ) must contain fat-tailed distributions
for measurements yk; i.e., Fxk,yk|Yk−1

(θ) cannot be a Gaussian family. In other words, when
addressing measurement outliers, any simplification aiming at reducing computational complexity
should strictly avoid taking Gaussian assumption. However, when we only handle parameter
uncertainties in the linear system model (2.1), we may take Gaussian assumption for prior states
and noises, i.e., Pxk|Yk−1

and Pvk
, to reduce the computational complexity of the distributionally

robust state estimation problem. Additionally, when there exist outliers in measurements, linear
estimators, i.e., x̂k = bk+Akyk where bk ∈ Rn and Ak ∈ Rn×m are constant, are not admissible.
Note that linear estimators are sensitive to measurement outliers: a large error in yk also leads to
a large error in x̂k because Ak is just a matrix (i.e., a linear operator), which linearly propagates
the error contained in yk to x̂k (i.e., it cannot attenuate or limit the influence that the error
contained in yk may bring to the state estimate). In contrast, some nonlinear estimators are
inherently insensitive to measurement outliers. This point will be explained in detail later; see
Theorem 11 and (2.76) for a snapshot. Briefly speaking, there exists a nonlinear function ψ(·),
called influence function, to limit the influence that a measurement outlier (i.e., an unexpectedly
large value of yk) may bring to the estimator.
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2.2 Addressing Parameter Uncertainty

As a special case, we first study the distributionally robust state estimation problem for the linear
system (2.1) subject to only parameter uncertainties. In this case, the ambiguity set Fxk,yk|Yk−1

(θ)

is not necessarily required to contain heavy-tailed distributions for yk; i.e., Gaussian assumption
is still acceptable. Additionally, linear estimators that are inherently sensitive to measurement
outliers are also acceptable. We first give a detailed literature review for this special class of
problems.

2.2.1 Supplementary Literature Review

According to the appearance time and philosophical/mathematical complexity of the first
inspirational work in each category, we can assign these methodological categories into five
generations.

The first-generation methods include representative suboptimal filters, such as fading-memory
Kalman-like3 filters [36,106,107], adaptive Kalman-like filters [54,78,79], multiple-model Kalman
bank filters [82,83], and finite-horizon-memory Kalman-like filters [73, Section V], [74]. These
methods represent the first to be considered in practice due to their high computational efficiency
(at least for some specific problems) and simplicity.

The second-generation methods include robust Kalman filters for uncertain noise variances
[108,109], H∞ filters [73,77], set-valued Kalman-like filters [76], risk-sensitive (i.e., exponential-
cost) Kalman-like filters [28,75,90], guaranteed-cost (i.e., upper-bound [31,110]) Kalman-like
filters [111], and their extensions. These filters are robustified by minimizing the worst-case
estimation error while sacrificing the estimation performance under nominal conditions. The
main disadvantage of this generation is that the existence or stability conditions at every time
step must be guaranteed by adjusting some parameters (e.g., γ in Eq. (8) of [73], or αk in [31]),
which prevents online operations [27]. Extensions to these methods involve making a trade-off
between robustness and nominal performance [112, 113] or considering a greater number of
general uncertainty types [113–115].

The third-generation methods include unknown-input Kalman-like filters [53, 84–86, 101, 116]
and filters for stochastic parametric uncertainties [29,87,88]. Specifically, the unknown-input
Kalman-like filters treat modeling uncertainties as unknown inputs exerted on the nominal
model, while the filters for stochastic parametric uncertainties regard modeling uncertainties as
random variables/vectors imposed on nominal system matrices (i.e., Fk, Gk, and Hk). Moreover,
in stochastic parametric uncertainty settings, the autocorrelation matrix of the state vector is
typically assumed to lie in a predesigned polytope [29,87]. These two categorical methods are
suitable (sometimes highly effective) for some specific settings of system uncertainties when
fortunately given the structural information of the system’s uncertainties, for example, given

3For strict definition of "Kalman-like", see Appendix A.5.
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Gk in [53] or given Eq. (3) in [29]. Notable extensions include solutions for the case where
unknown inputs and measurement outliers exist simultaneously [101], as well as for the case
where unknown inputs exist in multiple-model settings [116], etc.

The fourth-generation methods are represented by [27], where the modeling uncertainties are
norm-constrained and added to nominal system matrices. Although classic and popular in
state-space estimation theory, the framework in [27] has a major limitation in that it is difficult
to determine the structural parameters, for example, to select the proper structures of Mi, ∆i,
Ef,i, and Eg,i in Eq. (41) of [27], because they are usually matrices/vectors with many entries
to be designed. The extensions of this framework include [117–119], etc.

This thesis studies a new framework that is as general as the third-generation representatives
in [29,53] and the fourth-generation representative in [27]. However, it does not require a filter
designer to determine the structure of the modeling uncertainties (e.g., Gk in [53]; Fi,k−1, Gi,k−1

in [29]; Mi, ∆i, Ef,i, and Eg,i in [27]), and only a few (typically one to two) scalar parameters
are employed to describe the uncertainties. The new framework is termed the distributionally
robust state estimation for linear Markov systems and is a member of the fifth-generation
methods. In this new framework, the modeling uncertainties are expressed using a family of
probability distributions. The worst-case state estimator, i.e., the robust estimator, takes effect
over the least-favorable distribution.

Note that the literature is listed in perspective, not in strict chronology. Further discussions on
the mentioned state-of-the-art frameworks are presented in Section 2.2.5.

2.2.2 Distributionally Robust State Estimation

With the distributionally robust estimation model (2.4) on hand, the next steps are 1) to
identify the explicit expression of the nominal distribution P̄xk,yk|Yk−1

, 2) to explicitly define a
proper form of the ambiguity set Fxk,yk|Yk−1

(θ) around P̄xk,yk|Yk−1
, and 3) to derive tractable

reformulation(s) of (2.4) based on Fxk,yk|Yk−1
(θ). We progressively work on the three steps in

this subsection.

First, we find the nominal distribution P̄xk,yk|Yk−1
. For notation brevity, let zk := [x⊤

k ,y
⊤
k ]

⊤.
From (2.1), the nominal distribution conditioned on xk−1 is known as

P̄zk|xk−1
= Nn+m


 Fk−1

HkFk−1

xk−1, Σ
◦
k

 , 4 (2.5)

4This is a random probability measure because xk−1 is random. Nevertheless, whenever xk−1 has a realization,
this probability measure becomes deterministic. This random measure is also known as a transition kernel or
probability kernel: 1) for every Borel set B on Rn+m, P̄zk|xk−1

(B) is a σ(xk−1)-measurable random variable; 2)
for every specified xk−1, P̄zk|xk−1=xk−1

is a distribution/law of zk.
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where

Σ◦
k =

 Gk−1Q
1
2
k−1 0

HkGk−1Q
1
2
k−1 R

1
2
k


 Gk−1Q

1
2
k−1 0

HkGk−1Q
1
2
k−1 R

1
2
k


⊤

,

in which we note that the notation of the square root of a positive semidefinite matrix is
Q

1
2 (Q

1
2 )⊤ = Q. For details of derivation, see Appendix B.1. The extension of Σ◦

k to the case
where wk−1 and vk are correlated is straightforward. We do not discuss it here. Suppose that
the conditional distribution of xk−1 given Yk−1 is

Pxk−1|Yk−1
= Dn

(
x̂k−1|k−1,P

∗
k−1|k−1

)
, 5

where the optimal (robust) estimate of xk−1 is x̂k−1|k−1 and the corresponding estimation error
covariance is P ∗

k−1|k−1. Note that the system (2.1) is not guaranteed to be exact so that the
distribution Pxk−1|Yk−1

may not be Gaussian. This is because, for example, if Fk contains a
random variable at one entry, even though xk and wk are white (i.e., mutually independent)
Gaussian and Gk is deterministically constant, xk+1 will no longer be Gaussian. However, for
simplicity, we may limit our estimation problem within the Gaussian filtering framework [13] (cf.
the unscented [39]/cubature [40] Kalman filter for nonlinear system filtering problem). That is,
we use a Gaussian distribution Nn

(
x̂k−1|k−1,P

∗
k−1|k−1

)
to approximate Dn

(
x̂k−1|k−1,P

∗
k−1|k−1

)
in the state estimation procedure. By using the nominal system model (2.1), we can obtain the
nominal joint state-measurement distribution conditioned on the previous measurements as

P̄zk|Yk−1
(B) =

∫
Rn

P̄zk|xk−1=xk−1
(B) · Pxk−1|Yk−1

(dxk−1 | Yk−1), ∀B ∈ B(Rn × Rm), (2.6)

where B(Rn × Rm) denotes the Borel σ-algebra on Rn × Rm (n.b., zk is a random variable
on Rn × Rm). Hence, the time-update step (i.e., prior estimation step) in the estimation
procedure is given as

P̄zk|Yk−1
= Nn+m (µk,Σk) ,

6 (2.7)

where

µk =

 µx,k

µy,k

 =

 Fk−1

HkFk−1

 x̂k−1|k−1 (2.8)

5This is a random probability measure (a.k.a., transition kernel or probability kernel) because Yk−1 is random.
However, whenever Yk−1 has a realization, this probability measure becomes deterministic. Strictly speaking,
x̂k−1|k−1 and P ∗

k−1|k−1 are random because Yk−1 is random. However, they are non-random in terms of xk−1:
when Yk−1 = Yk−1 is specified, they become deterministic.

6Strictly speaking, µk and Σk are random because they are conditioned on the random sequence Yk−1. However,
whenever we have a realization of Yk−1, e.g., Yk−1, µk and Σk will become deterministic. Either off or on, µk

and Σk are non-random in terms of zk, and they are mean and co-variance of the random vector zk. Hence, we
still use Italic fond for µk and Σk to emphasize that they are non-random in terms of zk.
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and

Σk =

 Fk−1

HkFk−1

P ∗
k−1|k−1

 Fk−1

HkFk−1


⊤

+

 Gk−1Q
1
2
k−1 0

HkGk−1Q
1
2
k−1 R

1
2
k


 Gk−1Q

1
2
k−1 0

HkGk−1Q
1
2
k−1 R

1
2
k


⊤

.

(2.9)

Specifically, in (2.8), we let µx,k := Fk−1x̂k−1|k−1 and µy,k :=HkFk−1x̂k−1|k−1, respectively. In
state estimation literature, µx,k usually writes x̂k|k−1, i.e., the prior state estimate. Meanwhile,
the left-top block of Σk usually writes Pk|k−1, i.e., the prior state estimation error covariance.

Remark 1. The time-update step at the time k means the algorithmic step through which the
prior estimate of xk, i.e., x̂k|k−1 := E(xk|Yk−1), can be obtained before observing yk. In
contrast, the measurement-update step at the time k means the algorithmic step through which
the posterior estimate of xk, i.e., x̂k|k := E(xk|Yk), can be obtained after observing yk. Details
can be found in, e.g., [18, Chapter 5.1]. □

Second, we define the ambiguity set Fxk,yk|Yk−1
(θ) which contains all the possibly true distribu-

tions Pzk|Yk−1
. Using the moment-based ambiguity set proposed in [120], we have

Fxk,yk|Yk−1
(θ1, θ2, θ3)

=


Pzk|Yk−1

∈ P(Rn × Rm)

∣∣∣∣∣∣∣∣∣∣∣

[
E(zk|Yk−1)− µk

]⊤
Σ−1

k

[
E(zk|Yk−1)− µk

]
≤ θ3

E
[
(zk − µk)(zk − µk)

⊤|Yk−1

]
⪯ θ2Σk

E
[
(zk − µk)(zk − µk)

⊤|Yk−1

]
⪰ θ1Σk


(2.10)

where θ3 ≥ 0 and θ2 ≥ 1 ≥ θ1 ≥ 0. Note that Fxk,yk|Yk−1
is parameterized by three parameters:

θ1, θ2, and θ3. Suppose a possibly true distribution has the conditional mean ck and the
conditional co-variance Sk, i.e., Pzk|Yk−1

= Dn+m (ck,Sk) ∈ P(Rn×Rm), where ck = [c⊤x,k, c
⊤
y,k]

⊤,
cx,k = E(xk|Yk−1), and cy,k = E(yk|Yk−1). Then, Fxk,yk|Yk−1

can be given as

Fxk,yk|Yk−1
(θ1, θ2, θ3) =


Pzk|Yk−1

= Dn+m (ck,Sk)

∣∣∣∣∣∣∣∣∣∣∣
(ck − µk)

⊤Σ−1
k (ck − µk) ≤ θ3

Sk + (ck − µk) (ck − µk)
⊤ ⪯ θ2Σk

Sk + (ck − µk) (ck − µk)
⊤ ⪰ θ1Σk


(2.11)

Eq. (2.11) implies that the possibly true mean ck lies in a ball centered at µk and the possibly true
covariance Sk is linearly bounded by the nominal covariance Σk. This ambiguity set describes
the trust level that we have towards the nominal distribution (2.7), and every probability measure
inside is parameterized by ck and Sk. The trust level is quantified by θ3, θ2, and θ1. The smaller
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θ3 is and the closer θ2 and θ1 are to one, the more trust we have towards the nominal distribution.
Note that when θ3 = 0 and θ2 = θ1 = 1, the ambiguity set contains only the nominal distribution
P̄zk|Yk−1

whose mean is µk and covariance is Σk [cf. (2.7)]. In highlights, the set (2.11) defines a
space for distributional model uncertainties (cf. the norm-based model uncertainties in [27]).

Third, we derive tractable reformulation(s) of (2.4). Recall from (A.5) that under the linear
estimation case [i.e., the linear estimator is used no matter whether the nominal P̄zk|Yk−1

and the
possibly true Pzk|Yk−1

are Gaussian or not], the optimal estimator ϕ(·) has an affine form, i.e.,

x̂k|k = ϕ(yk) = Akyk + bk, (2.12)

where Ak ∈ Rn×m and bk ∈ Rn, and they are to be determined. We have the following theorem.

Theorem 1. With the optimal estimator (2.12), the distributionally robust state estimation
problem (2.4) subject to (2.11) admits von Neumann’s min-max theorem (i.e., saddle point
theorem):

min
Ak,bk

max
ck,Sk

TrE [xk − (Akyk + bk)] [xk − (Akyk + bk)]
⊤

=

max
ck,Sk

min
Ak,bk

TrE [xk − (Akyk + bk)] [xk − (Akyk + bk)]
⊤ ,

(2.13)

where the expectation is taken over Pxk,yk|Yk−1
. In addition, if Σk ≻ 0, this optimization problem

is equivalent to a nonlinear positive semidefinite program (NSDP)

max
Sk

Tr
[
Sxx,k − Sxy,kS

−1
yy,kSyx,k

]
, (2.14)

subject to 

Sk ⪯ θ2Σk,

Sk ⪰ θ1Σk,

Sk =

 Sxx,k Sxy,k

Syx,k Syy,k

 ≻ 0,

Sxx,k ≻ 0,

Syy,k ≻ 0.

(2.15)

Proof. See Appendix B.2.

Remark 2. When there are no uncertainties in (2.1), the ambiguity set Fxk,yk|Yk−1
(θ1, θ2, θ3)

defined in (2.11) contains only the nominal distribution P̄zk|Yk−1
. Hence, ck and Sk would be

fixed, and ck = µk and Sk = Σk always hold. This observation reduces the distributionally
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robust state estimator (2.4) to the canonical Kalman filter (A.10). Moreover, the worst-case
estimation error covariance (2.14) becomes the nominal estimation error covariance (A.13). □

To further lower the number of parameters of the uncertainty set, motivated by the reputed
restricted isometry property [121], we may consider an alternative as

Sk ⪯ (1 + θ)Σk,

Sk ⪰ (1− θ)Σk,

Sk =

 Sxx,k Sxy,k

Syx,k Syy,k

 ≻ 0,

Sxx,k ≻ 0,

Syy,k ≻ 0,

(2.16)

in which 0 ≤ θ < 1. However, (2.16) is not equivalent to (2.15).

Theorem 2. The NSDP (2.14) subject to (2.15) is analytically solved by

S∗
k = θ2Σk. (2.17)

Proof. See Appendix B.4.

By comparing with (2.9), Theorem 2 implies that the robust filter is achieved by simultaneously
inflating state estimation error covariance in the last time step (i.e., P ∗

k−1|k−1), process error
covariance (i.e., Qk−1), and observation error covariance (i.e., Rk), by θ2. This is intuitively
understandable because

1) if there exist model uncertainties in the process dynamics, we are less confident of state
evolution equation so that we should improve the process noise. This corresponds to
multiplying Qk−1 by θ2;

2) if there exist model uncertainties in the measurement dynamics, we are less confident of state
observation equation so that we should improve the measurement noise. This corresponds to
multiplying Rk by θ2;

3) if there exist model uncertainties in both/either the process dynamics and/or the measurement
dynamics, we are less confident of state estimates in the past so that we should improve the
state estimation error covariance in the past. This corresponds to multiplying P ∗

k−1|k−1 by
θ2.

Since θ2 ≥ 1, via multiplying by θ2, we can inflate state estimation error covariance in the last
time step, process error covariance, and observation error covariance. Through Theorem 2, we
admit the estimate at the last time step, the process evolution equation, and the measurement
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equation are all uncertain with the same uncertainty level parameter θ2. Using the same
uncertainty level parameter might be questionable. Thus, later in Section 2.3, a generalized
case where the three quantities can be inflated by different parameters is discussed; compare
Theorem 7 (and also Theorem 12 and Theorem 10) with Theorem 2.

Corollary 1. By comparing (2.17) with [106], we can conclude that the traditional fading-memory
Kalman-like filter is a distributionally robust state estimation solution under moment-based
ambiguity. □

Corollary 2 (Measurement-Update Step). Suppose that S∗
k solves the optimization problem

(2.14) and (2.15). By recalling (2.12), (B.3), (B.7), and (B.8), the distributionally robust
estimator in the sense of linear minimum mean square estimation error is given as

x̂k|k = ϕ∗(yk) = A
∗
kyk + b

∗
k

= µx,k + S
∗
xy,k · (S∗

yy,k)
−1(yk − µy,k)

= Fk−1x̂k−1|k−1 + S
∗
xy,k · (S∗

yy,k)
−1(yk −HkFk−1x̂k−1|k−1),

(2.18)

and according to Theorem 1, the worst-case estimation error covariance is as

P ∗
k|k = S∗

xx,k − S∗
xy,k(S

∗
yy,k)

−1S∗
yx,k. (2.19)

Note that µx,k and µy,k in (2.18) are defined in (2.8). Moreover, the least-favorable (i.e.,
worst-case) conditional distribution of zk given Yk−1 is P∗

zk|Yk−1
= Dn+m (µk,S

∗
k) and the

worst-case conditional distribution of xk given Yk is P∗
xk|Yk

= Dn

(
x̂k|k,P

∗
k|k

)
; cf. Pxk−1|Yk−1

=

Dn

(
x̂k−1|k−1,P

∗
k−1|k−1

)
in (2.6). In the Gaussian filter framework, we have approximately

P∗
zk|Yk−1

= Nn+m (µk,S
∗
k) and P∗

xk|Yk
= Nn

(
x̂k|k,P

∗
k|k

)
. □

Theorem 2 reveals that S∗
xy,k · (S∗

yy,k)
−1 equals Σxy,k · (Σyy,k)

−1 so that (2.18) admits

x̂k|k = µx,k +Σxy,k · (Σyy,k)
−1(yk − µy,k), (2.20)

which is in the same form as the optimal estimation under the nominal distribution, i.e., (A.11).
This implies that under the moments-based ambiguity set, the optimal robust state estimate is
not directly influenced by the worst-case distribution at the current step.

The overall moments-based distributionally robust state estimator to the linear system (2.1)
subject to parameter uncertainty is summarized in Algorithm 2.1.

2.2.3 Computational Complexity

From Remark 2, we know that S∗
k ≡ Σk gives the canonical Kalman filter. Since the moment-

based distributionally robust state estimator is solved by S∗
k = θ2Σk, where θ2 is just a scalar
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Algorithm 2.1: Moment-Based Distributionally Robust Estimator for Linear Systems

Subject to Parameter Uncertainty

Definition: x̂k|k as the robust state estimator and x̂k|k the robust state estimate; P ∗
k|k as

the state estimation error covariance.

Initialize: x̂0|0, P ∗
0|0, θ.

Remark: In (2.18), c∗k has already been replaced with µk; cf. (B.8). In general, θ1, θ2
can be independently initialized without θ. By (2.17), the robust state estimation results

only depend on θ2. Therefore, we do not initialize θ1. When yk has a realization yk, the

estimator of xk, i.e., x̂k|k, gives an estimate x̂k|k to xk.

Input :measurement yk , k = 1, 2, 3, ...

1 θ2 ← 1 + θ. // See (2.16)

2 while true do

3 // Time-Update Step, i.e., Prior Estimation

4 Use (2.8) and (2.9) to obtain µk and Σk;

5 // Obtain the Worst-Case Scenario

6 Solve (2.14) and (2.15) with (2.17) to obtain S∗
k ;

7 // Measurement-Update Step, i.e., Posterior Estimation

8 Use (2.18) and (2.19) to obtain x̂k|k and P ∗
k|k;

9 // Next Time Step

10 k ← k + 1;

11 end

Output : x̂k|k

[cf. (2.17)], it has the same order of computational complexity as the canonical Kalman filter.
Specifically, at each time instant k, the computational complexity is O(n3) because for a state
estimation problem, we usually have n ≥ m and n ≥ p; see Remark 3. This means that the
moment-based distributionally robust state estimator is computationally as efficient as the
canonical Kalman filter.

Remark 3. We use O(t) to denote that the number of operations of an algorithmic process is
t. First, note that the computational complexity of the matrix multiplication for two matrices
Mn×m and Mm×p is O(nmp) using the definition of matrix multiplication, and of the matrix
inverse for a matrix Mm×m is O(m3) using the Gauss–Jordan elimination method. (The results
can be improved by advanced algorithms, e.g., the Strassen algorithm.) Therefore,

1) in the time-update step, the computational complexity of (2.8) is O[(n+m)×n+(n+m)], and of
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(2.9) is O[(n+m)×n×n+(n+m)×n×(n+m)+(n+m)×(p+m)×(n+m)+2×(n+m)×(n+m)];

2) in the step of obtaining the worst-case scenario, the computational complexity of (2.17) is
O[2× (n+m)× (n+m)];

3) in the measurement-update step, the computational complexity of (2.18) is O[n2 + m3 +

nmm+ nm+ n], and of (2.19) is O[n2 +m3 + nmm+ nmn+ n2].

Let r := max{n,m, p}. As a result, the computational complexity of Algorithm 2.1 is asymptoti-
cally O(r3). Since for a usual state estimation problem, n ≥ p and n ≥ m, the computational
complexity of Algorithm 2.1 is O(n3). □

2.2.4 Other Types of Ambiguity Sets

This subsection discusses the scenarios when we do not adopt the moment-based ambiguity set.
We consider the metrics/divergences of distributions, such as the Kullback–Leibler divergence and
the Wasserstein distance. Note that the Kullback–Leibler divergence is not a statistical metric
since it does not meet the metric axioms. We do not explicitly discuss the τ -divergence [90]
because the conclusions under the Kullback–Leibler divergence remain the same as those under
the τ -divergence. When τ = 0, the τ -divergence degenerates to the Kullback–Leibler divergence.

Kullback–Leibler Divergence

Suppose Px and Qx have the same support S. If Px and Qx are absolutely continuous with
respect to the Lebesgue measure and Px is absolutely continuous with respect to Qx, then the
Kullback–Leibler divergence (KL-Divergence) of Px from Qx is defined as∫

S
ln

(
dPx

dQx

)
dPx =

∫
S
ln

(
p(x)

q(x)

)
p(x)dx, (2.21)

where dPx/dQx denotes the Radon-Nikodym derivative.

In this case, the ambiguity set is as (A.2). See also [89]. When we consider the distributionally
robust estimation problem (2.4), (A.2) is specified into

Fzk|Yk−1
(θ) =

{
Pzk|Yk−1

∈ P(Rn × Rm)
∣∣ KL

(
Pzk|Yk−1

∥P̄zk|Yk−1

)
≤ θ

}
. (2.22)

In general, if we use the τ -divergence, KL(P∥P̄) ≤ θ should be replaced with Dτ (P∥P̄) ≤ θ,
where Dτ (P∥P̄) denotes the τ -divergence [90]. Supposing Pzk|Yk−1

is also Gaussian, (2.22) can
be explicitly expressed as

KL(Pzk|Yk−1
∥P̄zk|Yk−1

) =
1

2

[
∥ck − µk∥2Σ−1

k

+Tr
[
Σ−1

k Sk − I
]
− ln det

(
Σ−1

k Sk

)]
≤ θ. (2.23)
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The corresponding worst-case conditional distribution of zk given Yk−1 is

P∗
zk|Yk−1

= Nn+m (µk,S
∗
k) , (2.24)

where

S∗
k =

 Σ̃xx,k Σxy,k

Σyx,k Σyy,k

 , (2.25)

and Σ̃xx,k is determined by the boundary condition KL(Pzk|Yk−1
∥P̄zk|Yk−1

) = θ [89]. In the
τ -divergence case, the forms of the corresponding P∗

zk|Yk−1
and S∗

k are the same as those in
(2.24) and (2.25), respectively, but Σ̃xx,k is determined instead from the boundary condition
Dτ (Pzk|Yk−1

∥P̄zk|Yk−1
) = θ [90].

Eq. (2.25) admits that the distributionally robust state estimation under the Kullback–Leibler
divergence (in general, the τ -divergence) can be written as

x̂k|k = µx,k +Σxy,k · (Σyy,k)
−1(yk − µy,k), (2.26)

which is of the same form as the optimal estimation under the nominal distribution, i.e., (A.11).
This means that under the Kullback–Leibler divergence or the τ -divergence, the worst-case
conditional distribution of zk given Yk−1 at the current time step does not directly influence
the optimal robust estimation at the same time step. This phenomenon keeps the same as that
under the moment-based ambiguity; cf. (2.20). It is worth mentioning that the τ -divergence
(including Kullback–Leibler) distributionally robust estimator generalizes the risk-sensitive
estimator (i.e., the exponential-cost estimator) in the sense of allowing the time-varying sensitivity
parameter [89,90].

Wasserstein Distance

The origin of the Wasserstein distance (i.e., Kantorovich-Rubinshtein metric) was inspired by
the optimal transport theory [122]; see also [123]. It is currently of most interests in operations
research [62] and machine learning [56, 124]. For any two distributions Pa and Qb supported on
the same set, the Wasserstein distance is defined as [62,122]

W(Pa,Qb) := inf
Πa,b

∫
∥a− b∥Πa,b(da,db) (2.27)

where a and b are random vectors associated with Pa and Qb, respectively; Πa,b is any possible
joint distribution of (a,b) whose marginals are Pa and Qb; ∥ · ∥ denotes any possible vector
norm.

In this case, the ambiguity set is as (A.3). See also [91]. When we consider the distributionally
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robust estimation problem (2.4), (A.3) is specified into

Fzk|Yk−1
(θ) =

{
Pzk|Yk−1

∈ P(Rn × Rm)
∣∣ W

(
Pzk|Yk−1

, P̄zk|Yk−1

)
≤ θ

}
. (2.28)

If we suppose Pzk|Yk−1
is also Gaussian, (2.28) can be explicitly expressed as

W
(
Pzk|Yk−1

, P̄zk|Yk−1

)
=

√√√√∥ck − µk∥2 +Tr

[
Sk +Σk − 2

(
Σ

1
2
kSkΣ

1
2
k

) 1
2

]
≤ θ. (2.29)

The corresponding worst-case conditional distribution of zk given Yk−1 is

P∗
zk|Yk−1

= Nn+m (µk,S
∗
k) , (2.30)

where S∗
k solves (2.14) subject to (2.29) [91].

Eq. (2.30) suggests that the distributionally robust state estimation under the Wasserstein
ambiguity set is (2.18), which is generally not guaranteed to have the same form as (2.20) and
(2.26). This means that, under the Wasserstein distance, the worst-case conditional distribution
of zk given Yk−1 at the current time step directly influences the optimal robust estimate at the
same time step.

Comparisons with the Moment Ambiguity Set

Three points must be highlighted. First, note that both the Kullback–Leibler (in general, the
τ -divergence) ambiguity set and the Wasserstein ambiguity set require that the real conditional
distribution of zk given Yk−1 is Gaussian. Otherwise, there is no explicit equivalence between
(2.22) and (2.23) and between (2.28) and (2.29). This requirement is difficult to satisfy for a
linear system under unknown uncertainties. For example, if Fk−1 contains a random variable
at one entry, even though xk−1 and wk−1 are white (i.e., mutually independent) Gaussian and
Gk−1 is deterministically constant, xk will no longer be Gaussian. Second, although Gaussian,
the Kullback–Leibler (in general, the τ -divergence) ambiguity set and the Wasserstein ambiguity
set are highly nonlinear, whereas our moment ambiguity set is linear. Note that an optimization
problem over a linear feasible set is generally easier to solve. Specifically, compared with the
extremely nonlinear semidefinite program under the Wasserstein ambiguity set [i.e., (2.14)
s.t. (2.29)], the nonlinearity of our NSDP under the moment ambiguity set [i.e., (2.14) s.t.
(2.15)] is considerably more moderate, and fortunately, our new NSDP can be analytically (and
therefore computationally efficiently) solved. This feature saves a substantial amount of running
time. Third, under the Wasserstein ambiguity set, the worst-case conditional distribution
of zk given Yk−1 at the current time step (i.e., k) directly influences the optimal robust
estimate at the same time step, while under the Kullback–Leibler (in general, the τ -divergence)
ambiguity set and the moment ambiguity set [cf. (2.20)], it does not directly influence the
optimal robust estimate at the same time step. However, this does not mean that the Kullback–
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Leibler (in general, the τ -divergence) distributionally robust estimator and the moment-based
distributionally robust estimator do nothing to robustify the state estimator. Rather, the effect
is indirect: they influence the filter gains in the future instead of the gains at the current time
step. More specifically, note that each filter type has a different associated P ∗

k|k at the time step
k. Therefore, according to (2.9), they have different Σk+1 values, which leads to different state
estimates at the time step k + 1.

2.2.5 Comparisons with Existing Frameworks

Regarding modeling uncertainties in (2.1), the first-generation methods actually do not address
the problem from the perspective of robustness. Instead, they adaptively adjust the filter
parameters/structures so that the state estimation is consistent with the measurements and
the divergences of filters are avoided. For example, the adaptive Kalman filter assumes that
modeling uncertainties perturb the process noise covariance Qk−1 and/or the measurement noise
covariance Rk (i.e., we do not exactly know the true Qk−1 or Rk) and then estimates Qk−1 or
Rk when estimating the state. One issue with the adaptive Kalman filter is that addressing
the fast-changing statistics of noises is hard (i.e., when the true Qk−1 or Rk changes quickly).
Likewise, unknown-input filters try to improve the state estimation performance, for example,
by estimating the unknown input in the sense of unbiased minimum variance (see [53,85]), in
the sense of maximum likelihood (see [86]), or by leveraging an auxiliary term (see [84]).

The successive four generations (except unknown-input filters in the third generation) are
essentially robust filters (i.e., robust state estimators). The worst-case state estimation error
covariance matrix (i.e., the upper bound of the state estimation error covariance matrix [31,111])
is minimized to achieve robustness so that the filter is insensitive to modeling uncertainties.

When modeling uncertainties exist, filter designers must explicitly describe their structures and
parameters. For example, in unknown-input filters [53], we study the linear system

xk = Fk−1xk−1 + Γk−1dk−1 +Gk−1wk−1,

yk =Hkxk + vk,

(2.31)

where dk−1 ∈ Rq is the unknown input used to describe the modeling uncertainties. Note that
the unknown-input dk may also exist in the measurement dynamics [85, 86, 101,116]. Obviously,
in this case, the modeling uncertainties are limited to the range space of Γk−1. To achieve good
estimation performance, the filter designer must carefully determine the structure and entries of
Γk−1. For another example, in [27], we are concerned with the linear system

xk = (Fk−1 + δFk−1)xk−1 + (Gk−1 + δGk−1)wk−1,

yk =Hkxk + vk,

(2.32)
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where δFk−1 and δGk−1 are used to model the perturbations imposed on the nominal system
matrices Fk−1 and Gk−1, respectively. In addition, δFk−1 and δGk−1 are assumed to satisfy the
following structure: [

δFk−1 δGk−1

]
=Mk−1∆k−1

[
Ef,k−1 Eg,k−1

]
, (2.33)

where ∆k−1 is an arbitrary contraction operator (i.e., the operator norm is less than one). Mk−1,
Ef,k−1, and Eg,k−1 are structure matrices that must be carefully designed. For the third example,
we refer to [29], in which the focused linear system is the same as (2.32), but δFk−1 and δGk−1

are modeled as 
δFk−1 =

l∑
i=1

Fi,k−1 · ζi,k−1

δGk−1 =

l∑
i=1

Gi,k−1 · ζi,k−1,

(2.34)

where ζi,k−1 is a random variable with assumed-known statistics; l, Fi,k−1, and Gi,k−1 are
assumed to be exactly known. For the fourth example, we shall recall the framework introduced
in this section where the modeling uncertainties are described by a family of distributions; see
(A.1), (2.4), (2.11), and (2.15).

In summary, all the exemplified robust estimation frameworks minimize the worst-case state
estimation error covariance (viz., the upper bound of the state estimation error covariance),
although the uncertainties are described, structured, parameterized, and bounded in different
ways. However, the magic of the proposed framework is that only a few scalars [e.g., two scalars
θ1 and θ2 in (2.15) or only one scale θ in (2.16)] rather than subtly designed matrices [e.g., Γk−1

in (2.31); Mk−1, Ef,k−1, and Eg,k−1 in (2.33); and Fi,k−1 and Gi,k−1 in (2.34)] are required to
describe the modeling uncertainties. This means that when ONLY the nominal model (2.1) is
available and we do not know how uncertainties exist, our framework takes the least risk of
failure. This is because if the structure matrices in (2.31), (2.33), and (2.34) are inappropriately
provided, the estimation performance degrades significantly. However, to design proper structure
matrices, additional information on real system perturbations is required. From the perspective
of information, additional information (e.g., structures and values) on modeling uncertainties
helps improve the estimation performance. As we can expect, if we can exactly model the system
in the form of (2.31), (2.33), or (2.34), the specifically designed frameworks might outperform our
new distributional framework. The claims in this subsection will be validated in the experiments.

2.2.6 Experiments

This subsection compares the state estimation performance of the existing filters with our newly
proposed filter for linear systems subject to parameter uncertainty. All the source data and
codes are available online at GitHub: https://github.com/Spratm-Asleaf/DRSE. Interested
readers can reproduce and/or verify the claims in this section by changing the parameters or

https://github.com/Spratm-Asleaf/DRSE
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codes themselves. To ensure clarity regarding figures, we distinguish different results only by
different colors. Readers who have problems identifying colors could change the codes to generate
different line types and markers to display the results.

We continue studying the classical instance discussed in [27,89,91], i.e.,

F real
k =

 0.9802 0.0196 + α ·∆k

0 0.9802

 ,Gk =

 1 0

0 1

 ,Hk =

[
1 −1

]
,

Qk =

 1.9608 0.0195

0.0195 1.9605

 ,Rk =

[
1

]
,

where the random scalar ∆k ∈ U := [−1, 1] denotes the real perturbations imposed on the system
and U defines its support; α is a multiplicative coefficient (n.b., in [27], α was fixed as 0.099). In
this state estimation problem, the nominal system matrix is

Fk =

 0.9802 0.0196

0 0.9802

 .
Candidate Filters

According to Subsection 2.2.1 and Subsection 2.2.5, we are motivated to implement the following
filters for comparison.

1. TMKF: the canonical Kalman filter with the true model. Note that in the simulation, we
know the underlying true model over time (viz., F real

k ). Therefore, this method theoretically
gives the best estimate of state in the sense of linear unbiased minimum estimation error
covariance.

2. KF: the Kalman filter (with the nominal model Fk).

3. Adaptive: the adaptive Kalman-like filter [79] (cf. [54]).

4. Fading: the adaptive fading-memory Kalman-like filter [107].

5. H∞: the H∞ filter [73].

6. UB: the upper-bound Kalman-like filter [31].

7. UI: the unknown-input Kalman-like filter [53].

8. SPU: the filter for stochastic parametric uncertainties [29].

9. SNKF: Sayed’s norm-constrained Kalman-like filter [27].
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10. τ-KF: the τ -divergence Kalman-like filter [90].

11. WKF: the Wasserstein Kalman-like filter [91].

12. MKF: the moment-based distributionally robust state estimator introduced in this section.

The twelve methods above are representatives of the five filter generations beginning with
the canonical Kalman filter in the 1960s and ending with the filter proposed in this section.
We do not consider the set-valued Kalman-like filter [76], the guaranteed-cost Kalman-like
filter [111], and the traditional risk-sensitive Kalman-like filter [75] because in [27], they have
been substantially studied and compared. Note that the τ -divergence Kalman-like filter [90]
generalizes the Kullback–Leibler Kalman-like filter [89] (when τ = 0, the τ -divergence gives the
Kullback–Leibler divergence). Note also that the traditional risk-sensitive Kalman-like filter is a
special case of the τ -divergence Kalman-like filter [89,90].

Results with Exactly Known Structures of Uncertainties

In this illustration, we first assume that the structural information of the modeling uncertainties
is known. Namely, all the filtering frameworks know that the uncertainties impact the first entry
of the state vector.

In all methods, the initial state estimate is set as x̂0|0 = [0, 0]⊤ and its corresponding state
estimation error covariance P ∗

0|0 is set as diag{1, 1}, where diag{·} denotes a diagonal matrix
[27, 89, 91]. All the parameters of each filter are tuned to perform (nearly) optimally for the
studied instance (when ∆k randomly changes and α = 1). The details of the parameter settings
are available in the disclosed codes at GitHub.

In the H∞ filter, we select γ (see [73]) such that the existence condition of the H∞ filter is
guaranteed. From simulation validation, we select γ = 102.

In Sayed’s norm-constrained Kalman-like filter [27], we set Mk−1 = [0.0198, 0]⊤, Ef,k−1 =

[0, α/0.0198], and Eg,k−1 = [0, 0] in (2.33), such that

Mk−1Ef,k−1 =

 0 α

0 0

 .
Namely, we assume that we know exactly the structural information of the modeling uncertainties.

In the unknown-input Kalman-like filter [53], we set Γk = [1, 0]⊤ in (2.31) because, as supposed
before, we know that the modeling uncertainties influence the first entry of the state vector, and
we need to guarantee Assumption 1 of [53].
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In the filter for stochastic parametric uncertainties [29], we have l = 1 in (2.34),

F1,k−1 =

 0
√
3α

0 0

 ,
and G1,k−1 = 0. Note that ζi,k−1 is assumed to have unit variance in [29]. However, in the
studied instance, the variance of ∆k is [1 − (−1)]2/12 = 1/3 if uniformly distributed. Thus,
the right-top entry of F1,k−1 is

√
3α rather than α. The initial polytope is constructed as a

hypercube centered at diag{1, 1} with an edge length of 1. Namely, the vertexes of this polytope
are diag{0.5, 0.5}, diag{0.5, 1.5}, diag{1.5, 0.5}, and diag{1.5, 1.5} (i.e., p = 4). In other words,
we construct the initial polytope for the autocorrelation matrix (of the state vector) around the
initial state estimation error covariance (recall that the initial state estimation error covariance
has been set to diag{1, 1}).

In the τ -divergence Kalman-like filter [90], we let τ = 0 (therefore, the τ -divergence Kalman-like
filter specifies the Kullback–Leibler Kalman-like filter [89]) and the radius of the ambiguity set
be 1.5× 10−4.

In the Wasserstein Kalman-like filter [91], the radius of the ambiguity set is set to 0.1.

In our moment-based distributionally robust filter, θ = 0.02, and therefore, θ2 = 1.02 (see
Algorithm 2.1).

Suppose each simulation episode runs T = 1000 discrete-time steps. The estimation error at each
time k (shown in figures) is measured in decibels (dB) by 10 log10[(x1,k − x̂1,k)2 + (x2,k − x̂2,k)2],
where x1,k (resp. x2,k) is the first (resp. second) component of the state vector xk and x̂1,k

(resp. x̂2,k) denotes its estimate. The overall estimation error of each episode (shown in tables)
is measured by the root mean square error (RMSE) as√√√√ 1

T

T∑
k=1

[(x1,k − x̂1,k)2 + (x2,k − x̂2,k)2].

In principle, we should repeat the experiment independently several times and compare the
average estimation performance, just as [27] and [91] did where 500 independent episodes were
run. However, from the simulations, it is evident that the relative estimation performance of each
filter compared to other filters is the same for every independent episode. Therefore, without loss
of generality, we display only the estimation results of each filter for a single episode. Interested
readers could validate this claim with the disclosed codes themselves. We conduct each of the
following four experiments once (rather than many as explained).

• First, we fix ∆k = 1 for all k and let α = 5; i.e., the modeling uncertainty is constant but
unknown over time. The results are shown in Fig. 2.1 (a) and Table 2.1.
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(a) ∆k fixed and α = 5.
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(b) ∆k randomly changes and α = 1.
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(c) ∆k randomly changes and α = 5.
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(d) α = 0.

Figure 2.1: Results with prior known structural information (for H∞, the prior parametric
information is known, i.e., γ = 102). In (a), SPU and UI coincide.

• Second, let ∆k randomly take its value with the uniform distribution from its support U at
each step k and let α = 1; i.e., the modeling uncertainty is a stochastic process over time,
but with relatively small magnitude. The results are shown in Fig. 2.1 (b) and Table 2.2.

• Third, let ∆k randomly take its value with the uniform distribution from its support U at
each step k and let α = 5; i.e., the modeling uncertainty is a stochastic process over time,
but with relatively large magnitude. The results are shown in Fig. 2.1 (c) and Table 2.3.

• Fourth, we let α = 0; i.e., there are no modeling uncertainties. The results are shown in
Fig. 2.1 (d) and Table 2.4.

Note that the UB filter [31], which is in essence a kind of fading-memory Kalman-like filter
(cf. [106]) is inappropriate for the instance discussed in this section because Assumption (19)
of [31] requires that rank (Hk) = n. However, the instance that we are working on admits that
rank (Hk) = 1 ̸= n = 2. Therefore, the UB filter produces extremely unsatisfactory experimental
results. To significantly distinguish the different plots in figures, we are using relatively large
values for α (i.e., 1 and 5) rather than a small value of 0.099 as in [27].

From Fig. 2.1 and Tables 2.1–2.4, the conclusions below can be outlined.
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Table 2.1: Results when ∆k = 1 fixed and α = 5

Filter RMSE Avg Time Filter RMSE Avg Time

TMKF 2.59 2.83e-5 UI 9.57 3.45e-5

KF 562.28 1.91e-5 SPU 9.66 17364.00e-5

Adaptive 1172.48 3.02e-5 SNKF 37.27 80.07e-5

Fading 2347.60 3.98e-5 τ -KF 91.18 28.17e-5

H∞ 474.88 16.41e-5 WKF 192.28 425.60e-5

UB 2349.63 68.91e-5 MKF 40.48 11.16e-5

Note: Results are obtained by a laptop with 8 G RAM and an Intel(R)

Core(TM) i7-8850H CPU @ 2.60 GHz.

Avg Time: Average Execution Time at each time step (unit: seconds);

1e-5: 1× 10−5.

Table 2.2: Results when ∆k randomly changes and α = 1

Filter RMSE Avg Time Filter RMSE Avg Time

TMKF 3.19 1.91e-5 UI 8.19 3.48e-5

KF 8.56 1.87e-5 SPU 8.10 16958.00e-5

Adaptive 11.38 2.42e-5 SNKF 8.41 80.07e-5

Fading 163.84 3.52e-5 τ -KF 8.33 27.72e-5

H∞ 8.33 13.34e-5 WKF 7.53 425.00e-5

UB 187.70 24.67e-5 MKF 7.83 11.33e-5

See Table 2.1 for table notes.

1) The TMKF always gives the best performance because it works with the true system model.

2) The UB filter does not work well for the instance that we are studying.

3) The traditional adaptive Kalman-like filter and the adaptive fading-memory Kalman-like
filter perform worse than the canonical Kalman filter on the studied instance.

4) The H∞ filter can be a choice because it at least outperforms the KF when modeling
uncertainties exist.
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Table 2.3: Results when ∆k randomly changes and α = 5

Filter RMSE Avg Time Filter RMSE Avg Time

TMKF 2.51 2.44e-5 UI 11.11 3.27e-5

KF 45.21 2.06e-5 SPU 11.10 17548.00e-5

Adaptive 94.64 3.10e-5 SNKF 18.30 83.14e-5

Fading 1429.59 4.07e-5 τ -KF 26.25 29.96e-5

H∞ 38.67 15.51e-5 WKF 20.56 420.94e-5

UB 1426.57 328.47e-5 MKF 14.88 11.46e-5

See Table 2.1 for table notes.

Table 2.4: Results when α = 0

Filter RMSE Avg Time Filter RMSE Avg Time

TMKF 9.61 2.04e-5 UI 11.03 3.63e-5

KF 9.61 1.93e-5 SPU 9.61 16914.00e-5

Adaptive 44.96 2.55e-5 SNKF 18.30 83.14e-5

Fading 11.97 3.02e-5 τ -KF 10.79 29.87e-5

H∞ 9.78 14.53e-5 WKF 10.33 416.44e-5

UB 77.04 11.99e-5 MKF 10.84 11.19e-5

See Table 2.1 for table notes.

5) The MKF is essentially the traditional fading-memory Kalman-like filter with a fixed fading
factor θ2. However, it outperforms the adaptive-factor fading-memory Kalman-like filters
in [107] and [31]. This phenomenon is interesting and exists for the conventional risk-sensitive
Kalman-like filter (which has a fixed risk-sensitive parameter) and the Kullback–Leibler
divergence-based Kalman-like filter (which has an adaptive risk-sensitive parameter) [89, Fig.
5]. Therefore, it is not always beneficial to adaptively adjust the risk-sensitive parameter of a
risk-sensitive Kalman-like filter and the fading factor of a fading-memory Kalman-like filter.

6) When we know the structural information of the modeling uncertainties, the UI filter and
SPU filter are two powerful solutions. However, the computational efficiency of the SPU
filter is extremely low since at each time step, the SPU filter needs to numerically solve a
semi-definite program (it is well known that solving a semi-definite program is generally
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challenging).

7) The SNKF is another good choice when we know the structural information of the modeling
uncertainties.

8) Although the structural information of the modeling uncertainties is not used, the distribu-
tionally robust state estimators are still promising. In addition, compared with the τ -KF
and WKF, the newly proposed MKF is attractive due to its high computational efficiency
and estimation performance.

9) When there are no modeling uncertainties, i.e., when the nominal model is the true model,
the KF works best compared with any other robust filtering frameworks (see Table 2.4). This
is because the KF is theoretically optimal for an exact system model. Therefore, the cost of
robustness under uncertain conditions is to sacrifice optimality under perfect conditions. More
specifically, robust filters are robust under uncertain conditions, but they are not optimal
under perfect conditions; the canonical Kalman filter is optimal under perfect conditions, but
it is not robust under uncertain conditions.

Results Without Exactly Known Structures of Uncertainties

For experiments in this subsection, we no longer assume that the structural information of the
modeling uncertainties is known. In other words, we know neither the perturbation structure

existing as

 0 α

0 0

 , nor the exact value of α. Thus, we may give improper structure matrices

for different filtering frameworks. For example, we may instead (mistakenly) set Ef,k−1 = [5, 0]

in (2.33), Γk = [0, 1]⊤ in (2.31), and F1,k−1 =

 0 0

3 0

 in (2.34). To clarify further, all the

frameworks no longer know that the uncertainties impact the first entry of the state vector.
Instead, they might assume that uncertainties impact the second entry of the state vector. In
addition, for the H∞ filter, we do not select a large enough γ (see [73]) in advance to guarantee
the existence of the H∞ filter. Alternatively, we arbitrarily select γ = 25 (rather than minimally
required 102). As we can expect, the incorrect structural/parametric information will mislead
the filters and degrade the estimation performance. In this experiment, we set α = 5 and let ∆k

take random uniformly distributed values from its support. The results are given in Fig. 2.2
and Table 2.5.

From the results, we can observe the potential of the newly proposed distributionally robust
estimation framework. Namely, even if we do not know the correct structural information of the
modeling uncertainties, we do not have a risk of encountering a disaster. However, compared
with Fig. 2.1, we can see that the cost of this powerful robustness is that the distributionally
robust estimation framework never accounts for the (partially) known information of the
modeling uncertainties. Therefore, when given some exact structural information of the modeling
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Figure 2.2: Results without prior structural/parametric information. In this case, only the
distributionally robust estimators can outperform the canonical Kalman filter. Filters that are
aware of structural/parametric information (e.g., UI, SNKF, and H∞) perform poorly. Moreover,
SPU even fails to work (and therefore is not plotted).

Table 2.5: Results without prior structural/parametric information

Filter RMSE Avg Time Filter RMSE Avg Time

TMKF 2.35 1.85e-5 UI 269.71 3.33e-5

KF 29.35 1.95e-5 SPU Fail to Work

Adaptive 39.95 2.55e-5 SNKF 69.53 79.96e-5

Fading 1116.28 3.20e-5 τ -KF 20.11 28.78e-5

H∞ 243.15 6.50e-5 WKF 14.73 422.05e-5

UB 1118.04 185.13e-5 MKF 10.57 10.75e-5

See Table 2.1 for table notes.

uncertainties, the distributionally robust estimation framework would perform worse than the
specifically designed structure-information-aware filtering frameworks. The discrepancy between
absolute robustness and optimality, however, is unavoidable from the perspective of information.

Suggestions on Tuning the Size of the Ambiguity Set

The size of the ambiguity set (2.11) is controlled by three scalars, namely, θ1, θ2, and θ3. To
include the nominal values of the mean (i.e., µk) and covariance (i.e., Σk) in the ambiguity set
(2.11), we must have θ3 ≥ 0 and θ2 ≥ 1 ≥ θ1 ≥ 0. Note that when θ3 = 0 and θ2 = θ1 = 1, the
ambiguity set (2.11) contains only the nominal distribution whose mean is µk and covariance
is Σk. However, the moment-based distributionally robust state estimator requires θ3 ≡ 0 [see
(B.8)], is irrelevant to θ1 [see (2.17)], and only depends on θ2. Therefore, θ1 can be any value in
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[0, 1], and we only investigate how to tune θ2. The caption of Fig. 2.3 lists the RMSEs of the
candidate filters.
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(a) The results with θ2 = 1.005, θ2 = 1.02, and
θ2 = 1.05.
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(b) RMSE versus θ2 (varying from 1 to 1.1).

Figure 2.3: Results with different θ2 values. In (a), RMSE: TMKF = 2.44, KF = 48.75, MKF
(1.005) = 39.97, MKF (1.02) = 12.52, MKF (1.05) = 106.43.

From Fig. 2.3, it is evident that θ2 can be neither too large nor too small to obtain satisfactory
estimation performance. The robust state estimator with a too small value of θ2 has insufficient
robustness (i.e., insufficient ability against uncertainties), while that with a too large value of θ2
is too conservative to produce satisfactory estimation performance. Unfortunately, the optimal
tuning method for θ2 is unknown (unless θ2 can be directly given in the model identification
stage that defines Fk, Gk, and Hk). At present, the author can only suggest that readers try
appropriate values for their specific problems. Nevertheless, we believe that tuning a scalar θ2 is
significantly easier than tuning structural matrices Γk−1 in (2.31), Mk−1, Ef,k−1 and Eg,k−1 in
(2.33), and Fi,k−1 and Gi,k−1 in (2.34).

A possible tuning method of θ2 for a real system involves leveraging a controller. This approach is
reasonable because a natural purpose for state estimation is to design a state-feedback controller.
In this case, the controller is parameterized by θ2. Hence, we can choose the value with which
the controller works best, e.g., for high-accuracy output tracking (i.e., the real output is close
enough to the expected output). However, controller design is not the unique reason for state
estimation. Sometimes, we are only concerned with monitoring the state of a system without
adjusting its quantities (i.e., state and output). In this case, the rule of thumb is to choose
the value that makes the estimated state [or some transform(s) of it] be consistent, as much as
possible, with subjective (e.g., qualitative) or objective (e.g., quantitative) evidence collected
somehow from somewhere else.

2.2.7 Section Conclusions

In this section, the distributionally robust state estimation method for linear Markov systems
subject to parameter uncertainties is proposed. We integrate the existing Kullback–Leibler-
divergence robust state estimation method [89], the τ -divergence robust state estimation method
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[90], the Wasserstein-distance robust state estimation method [91], and the newly proposed
moment-based robust state estimation method into a unified framework. The characteristics are
outlined below.

1) The proposed framework uses only a few scalars (i.e., the radius/scale of the ambiguity set)
rather than structured matrices with many entries to describe the modeling uncertainties.
Therefore, it does not require a priori structural information of modeling uncertainties.

2) Our framework uses a family of distributions to describe the modeling uncertainties, after
which the state estimation is performed over the worst-case distribution. In essence, borrowing
phrasings from existing frameworks, the upper bound of the estimation error covariance is
minimized.

3) The family of distributions [i.e., the ambiguity set, see (A.1)] can be described by several means,
such as the τ -divergence, the Kullback–Leibler divergence (2.22), the Wasserstein distance
(2.28), and the proposed moment-based ambiguity set (2.11). The detailed comparisons
among those different ambiguity sets can be revisited in Subsection 2.2.4. The newly
proposed moment-based filter in this section is most attractive due to it having the highest
computational efficiency, which can be attributed to the analytical tractability of the linearly
constrained NSDP (recall Theorem 2). In addition, the state estimation performance of
the moment-based filter is better than that of the τ -divergence filter (when τ = 0, i.e., the
Kullback–Leibler divergence) and the Wasserstein-distance filter for the studied instance.

4) The distributionally robust estimation framework outperforms other existing structural-
information-aware frameworks when we do not have a priori structural information of
modeling uncertainties. However, when we know some structural information of modeling
uncertainties, the newly proposed distributionally robust estimation framework performs
worse than the existing specifically designed structural-information-aware frameworks.

5) The risk-sensitive Kalman-like filter and the fading-memory Kalman-like filter are distri-
butionally robust state estimation solutions under Kullback–Leibler divergence (in general,
τ -divergence) ambiguity and moment-based ambiguity, respectively. However, it is not always
beneficial to adaptively adjust the risk-sensitive parameter of a risk-sensitive Kalman-like
filter and the fading factor of a fading-memory Kalman-like filter.

From Fig. 2.3, we can see that the proposed algorithm is not robust with respect to the size of
the ambiguity set (i.e., θ2). Unfortunately, the optimal or convincing tuning method for the size
of ambiguity sets (e.g., θ2 in this section; ρ in [91]; and c in [89, 90]) has yet to be found. We
invite scholars in this field to collaborate with the author on addressing the two issues below in
the future.

1) How can θ2 be tuned in a real system where the true state is unknown?

2) How can we ensure that the state estimator remains tuned over varying conditions? In other
words, how do we select a time-varying θ2,k where k denotes the discrete time?
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Although imperfect, the proposed method is still promising because tuning a scalar θ2 is easier
than tuning structural matrices Γk−1 in (2.31), Mk−1, Ef,k−1, and Eg,k−1 in (2.33), and Fi,k−1

and Gi,k−1 in (2.34).

2.3 Addressing Parameter Uncertainty And Measurement Out-
lier

In this section, we study the distributionally robust state estimation problem for the linear
system (2.1) subject to both parameter uncertainties and measurement outliers. In this case,
the ambiguity set Fxk,yk|Yk−1

(θ) is necessarily required to contain fat-tailed distributions for
yk. In addition, linear estimators that are inherently sensitive to measurement outliers are not
acceptable.

From (2.4), we are inspired to first study a distributionally robust Bayesian estimation problem

min
ϕ∈H′

y

max
P∈Fx,y(θ)

TrE[x− ϕ(y)][x− ϕ(y)]⊤ (2.35)

subject to the nominal prior state distribution P̄x, the nominal conditional measurement distri-
bution P̄y|x, a properly constructed ambiguity set Fx,y(θ) that contains fat-tailed distributions
for y, and the linear measurement equation

y =Hx+ v, (2.36)

where x, y, and v have finite second moments with appropriate dimensions and distributions. In
(2.35), the expectation is taken over Px,y. The subscript k (i.e., discrete time index) is dropped
to avoid notational clutter. Then, by identifying the joint distribution of (xk,yk) conditional
on Yk−1, we can solve (2.4).

2.3.1 Distributionally Robust Bayesian Estimation

With linear measurement relation (2.36), the joint state-measurement distribution Px,y can
be determined by (specifically, linearly shifted from) Px,v which has marginals Px and Pv. In
such a situation, it is reasonable and common to assume that the state x is independent of the
measurement noise v. As a result, we have px,y(x,y) = px,v(x,y −Hx) = py|x(y|x)px(x) =
pv|x(y − Hx|x)px(x) = pv(y − Hx)px(x), where px,y(x,y) and px|y(x|y) are the density
associated with Px,y and Px|y, respectively. Therefore,

py|x(y|x) = pv(y −Hx). (2.37)

To solve the min-max problem (2.35), we are required to identify the least-favorable distribution
from the ambiguity set Fx,y(θ). However, it depends on the specific choice of the estimator ϕ(·).
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Therefore, motivated by the strong min-max property (i.e., the saddle point property) in (2.13),
we can alternatively try to solve the max-min problem of (2.35) first, i.e.,

max
P∈Fx,y(θ)

min
ϕ∈H′

y

TrE[x− ϕ(y)][x− ϕ(y)]⊤ (2.38)

and then try to prove the strong min-max property between (2.35) and (2.38).7 By the weak
min-max property, it is unconditionally true that

max
P∈Fx,y(θ)

min
ϕ∈H′

y

TrE[x− ϕ(y)][x− ϕ(y)]⊤ ≤ min
ϕ∈H′

y

max
P∈Fx,y(θ)

TrE[x− ϕ(y)][x− ϕ(y)]⊤.

The equality stands only when the strong min-max property holds which is not generally
guaranteed. The max-min problem is easier to solve because for every P ∈ Fx,y(θ), we can find
the associated optimal estimator. We first study the optimal estimator for the nominal case.

Theorem 3. Suppose x ∼ Nn(x̄,M) nominally, x is independent of v, all involved densities
exist, and all involved integration and differentiation are interchangeable (i.e., densities are twice
continuously differentiable). Let s := y −Hx̄ denote the innovation vector, S the associated
covariance, and u := S−1/2s the diagonalized and normalized innovation. Then for the nominal
joint state-measurement distribution P̄x,y, the optimal estimator x̂ of x, i.e., E(x|y), is

x̂ = x̄+MH⊤S−1/2

[
−d ln pu(µ)

dµ

]
µ=u

, (2.39)

and the estimation error covariance E(x̂− x)(x̂− x)⊤, evaluated over Px,y, is

P =M −MH⊤S−1/2E

{[
−d2 ln pu(µ)

dµdµ⊤

]
µ=u

}
S−1/2HM , (2.40)

where
pu(µ) = py(S

1/2µ+Hx̄) · det(S1/2) (2.41)

is the density of u, py(·) is the density of y, and det(·) denotes the determinant of a matrix. In
(2.40), the inner expectation is taken over Pu. Note that both −d ln pu(µ)

dµ and −d2 ln pu(µ)
dµdµ⊤ are func-

tions of µ. [−d ln pu(µ)
dµ ]µ=u means that µ is replaced with u in −d ln pu(µ)

dµ , and [−d2 ln pu(µ)
dµdµ⊤ ]µ=u

means that µ is replaced with u in −d2 ln pu(µ)
dµdµ⊤ .

Proof. See Appendix B.5.

Theorem 3 reveals the benefit of the Gaussianity assumption of P̄x = Nn(x̄,M). Specifically,
without the Gaussianity assumption, we cannot have the closed-form expression of x̂ as in (2.39).

7The intuition is that the objective of (2.35) is positive-definite quadratic (thus convex) in ϕ and linear (thus
concave) in P. Hence, we expect the strong min-max property.
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We use an example below to give further intuitions for Theorem 3.

Example 1. Suppose v follows a Gaussian distribution: Pv = Nm(0,R). Then, the innovation
s := y−Hx̄ =H(x− x̄)+v is also Gaussian with mean of 0 and covariance S =HMH⊤+R.
Likewise, the normalized innovation u := S−1/2s is Gaussian with mean of 0 and covariance of
I. Namely, the density of u is

pu(µ) =
1√

(2π)m
exp

(
−1

2
µ⊤µ

)
.

As a result, we have

−d ln pu(µ)

dµ
=

1

2

dµ⊤µ

dµ
= µ = S−1/2 [y −Hx̄] ,

and the optimal estimator is given as

x̂ = x̄+MH⊤S−1/2

[
− d

dµ
ln pu(µ)

]
µ=u

= x̄+MH⊤S−1 [y −Hx̄]

= x̄+MH⊤(HMH⊤ +R)−1 [y −Hx̄] .

Likewise,

−d2 ln pu(µ)

dµdµ⊤ = I,

and therefore,

P =M −MH⊤S−1/2E
{[
− d2

dµdµ⊤ ln pu(µ)
]
µ=u

}
S−1/2HM

=M −MH⊤S−1/2IS−1/2HM

=M −MH⊤S−1HM

=M −MH⊤(HMH⊤ +R)−1HM .

We end up with the standard Kalman formulas. □

Example 1 shows that Theorem 3 is a generalization for the Gaussian-distributed measurement
noise v. In Theorem 3, the true measurement noise v is no longer required to be Gaussian.
Namely, fat-tailed noise distributions, e.g., t-distribution, Laplacian distribution, can be con-
sidered to model the measurement noises. The closed-form state estimator can be obtained by
deriving the distribution of the normalized innovation u. However, the nominal distribution of
v is stilled assumed to be Gaussian.

Since u := S−1/2(y −Hx̄) = S−1/2[H(x− x̄) + v], we have Eu = 0 and Euu⊤ = I. Thus, if x
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and v were all normally distributed, pu(µ) would be a standard Gaussian density because the
independence between x and v has already been assumed. Specifically, for every i, j ∈ [m] 8 and
i ̸= j, Eui = Euj = 0, Eu2i = Eu2j = 1, and Euiuj = 0. Therefore, we have

E

[
−d2 ln pu(µ)

dµdµ⊤

∣∣∣∣
µ=u

]
= I · E

[
−d2 ln pu(µ)

dµ2

∣∣∣∣
µ=u

]
, (2.42)

where the left expectation is taken over Pu and the right expectation is taken over Pu. Note
that the entry-wise pu(µ) is different from the joint pu(µ) and we have pu(µ) =

∏m
i=1 pui(µi).

Definition 1. For simplicity in notation, in the following, we use 9

E
[
−d2 ln p(µ)

dµ2

]
to implicitly stand for its full form

E

[
−d2 ln pu(µ)

dµ2

∣∣∣∣
µ=u

]
.

Let g(µ) := −d2 ln p(µ)
dµ2 . One should always keep it in mind that

E
[
−d2 ln p(µ)

dµ2

]
:= E

[
−d2 ln pu(µ)

dµ2

∣∣∣∣
µ=u

]
= Eg(u)

=

∫
g(µ)p(µ)dµ

=

∫ [
−d2 ln p(µ)

dµ2

]
p(µ)dµ.

Also, p(µ) would implicitly stand for its full form pu(µ) because there is no risk of confusion. □

For pu(µ), we identify that − d
dµ ln p(µ) is the score function10 of the distribution pu(µ) and

E[− d2

dµ2 ln p(µ)] the associated Fisher information. Eq. (2.42) is attractive since it allows us to
only study a univariate problem rather than a multivariate one. This motivated us to study the
normalized and diagnalized innovation u instead of the original (i.e., non-normalized) innovation
s. Hence, (2.40) can be simplified to

P =M −MH⊤S−1HM · E
[
− d2

dµ2
ln p(µ)

]
. (2.43)

8Note that the normalized innovation u is a m-length random vector because y ∈ Rm.
9In the applied statistics community, people may also use E[−d2 ln p(u)

du2 ]. To avoid possible confusion, in this
thesis, we do not adopt this notation.

10Namely, the maximum likelihood estimator of the mean of pu(µ); see also Appendix A.4.
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By the results in Theorem 3, we can find the explicit and tractable reformulation of the max-min
problem (2.38).

Corollary 3. Suppose the possibly true distribution of x is Nn(cx,Σx) [cf. the nominal
Nn(x̄,M) in Theorem 3]. The max-min problem (2.38) can be reformulated to

max
P∈Fx,y(θ)

TrP , (2.44)

where

P = Σx −ΣxH
⊤S−1HΣx · E

[
− d2

dµ2
ln p(µ)

]
, (2.45)

and S is the covariance matrix of the innovation vector s := y−Hcx. In this case, the normalized
and diagonalized innovation is defined as

u := S−1/2(y −Hcx)

and the corresponding optimal estimator is

x̂ = cx +ΣxH
⊤S−1/2

[
− d

dµ
ln pu(µ)

]
µ=u

.

Proof. This is immediate from Theorem 3 and (2.43). Since

E

[
− d

dµ
ln pu(µ)

∣∣∣∣
µ=u

]
= −

∫
[p(µ)]−1dp(µ)

dµ
p(µ)dµ = −

∫
dp(µ)

dµ
dµ = 0,

we have Ex̂ = cx = Ex, implying that x̂ is an unbiased estimate so that the minimum mean
square error matrix coincides with the minimum error covariance matrix.

To explicitly solve (2.44), we need to define the ambiguity set Fx,y(θ). The prior state distribution
is Gaussian as argued. We can construct the ambiguity set for Px as

Fx(θ) =

{
Px = Nn(cx,Σx)

∣∣∣∣ D(Px, P̄x) ≤ θ
}
.

where P̄x is the nominal Gaussian distribution of x [i.e., Nn(x̄,M) in Theorem 3], D(·, ·) is a
statistical metric (e.g., Wasserstein metric) or divergence (e.g., Kullback–Leibler divergence),
and θ ∈ R+ is the radius to control the scale and conservativeness of the set. The larger the θ,
the more conservative the robust estimation is. Specially, the ambiguity set for Px could be one
of the follows.

1) Kullback–Leibler divergence (KL divergence).

Fx(θx) =

{
Px = Nn(cx,Σx)

∣∣∣∣ KL(Px∥P̄x) ≤ θx

}
, (2.46)
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where KL(·∥·) denotes the KL divergence and under Gaussianity assumption, KL(Px∥P̄x) =
1
2 [∥cx− x̄∥

2
M−1 +Tr

[
M−1Σx − I

]
− ln det (M−1Σx)] [89]. Note that the explicit expression

for any two multivariate distributions does not always exist. Only for Gaussians, the
above equality holds. Extensions and generalizations for the KL divergence include the
τ -divergence [90], the ϕ-divergence (a.k.a. f -divergence) [125], etc. They all contain the KL
divergence as a special case.

2) Wasserstein distance.

Fx(θx) =

{
Px = Nn(cx,Σx)

∣∣∣∣ W(Px, P̄x) ≤ θx

}
, (2.47)

where W(·, ·) denotes the Wasserstein metric and under Gaussianity assumption, the type-2

Wasserstein distance is given as W(Px, P̄x) =

√
∥cx − x̄∥2 +Tr[Σx +M − 2(M

1
2ΣxM

1
2 )

1
2 ]

[69,91]. Note also that the explicit expression for any two multivariate distributions does not
always exist. Only for Gaussians, the above equality holds.

3) Moment-based set [120].

Fx(θ1,x, θ2,x, θ3,x) =


Px = Nn(cx,Σx)

∣∣∣∣∣∣∣∣∣∣∣
[Ex− x̄]⊤M−1 [Ex− x̄] ≤ θ3,x

E(x− x̄)(x− x̄)⊤ ⪯ θ2,xM

E(x− x̄)(x− x̄)⊤ ⪰ θ1,xM



=


Px = Nn(cx,Σx)

∣∣∣∣∣∣∣∣∣∣∣
[cx − x̄]⊤M−1 [cx − x̄] ≤ θ3,x

Σx + (cx − x̄)(cx − x̄)⊤ ⪯ θ2,xM

Σx + (cx − x̄)(cx − x̄)⊤ ⪰ θ1,xM


.

(2.48)
As we can see, in general, we need to use three parameters to define a moment-based ambiguity
set, θ3,x ≥ 0 and θ2,x ≥ 1 ≥ θ1,x ≥ 0.

Next, we define the ambiguity set for Py|x, i.e., the measurement distribution conditioned on
prior state. Since the nominal P̄y|x is given by nominal P̄v,11 we need to define the ambiguity
set for Pv. Suppose the nominal distribution of the measurement noise v, by the Gaussianity
assumption, is P̄v := Nm(0,R). The ambiguity set for Pv can be one of the follows.

1) Kullback–Leibler divergence (KL divergence).

Fv(θv) =

{
Pv = Nm(cv,Σv)

∣∣∣∣ KL(Pv∥P̄v) ≤ θv

}
. (2.49)

11Recall from (2.37) that py|x(y|x) = pv(y −Hx).
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2) Wasserstein distance.

Fv(θv) =

{
Pv = Nm(cv,Σv)

∣∣∣∣ W(Pv, P̄v) ≤ θv

}
. (2.50)

3) Moment-based set.

Fv(θ1,v, θ2,v, θ3,v) =


Pv = Nm(cv,Σv)

∣∣∣∣∣∣∣∣∣∣∣
[cv − 0]⊤R−1 [cv − 0] ≤ θ3,v

Σv + (cv − 0)(cv − 0)⊤ ⪯ θ2,vR

Σv + (cv − 0)(cv − 0)⊤ ⪰ θ1,vR


. (2.51)

The explicit expressions for KL(·∥·) and W(·, ·) are similar to those for Px in (2.46) and (2.47),
respectively.

Given the nominal Gaussian distributions of the prior state x and the measurement noise v, the
marginal distribution of the measurement y (or equivalently, the innovations s and u) is also
Gaussian, so is the joint state-measurement distribution. However, when outliers appear in the
measurement y, they appear in the normalized innovation u (and u) as well. That means the
possibly true distribution Pu is likely to deviate from the nominal standard Gaussian distribution
and, simultaneously, has fat tails. Let Fu(µ) denote the cumulative distribution function induced
from Pu, and Φ(µ) the cumulative distribution function of the standard Gaussian distribution.
Motivated by the M-estimation theory for outlier attenuation/rejection [126], we can construct
the ambiguity set for Pu as one of the follows.

1) ϵ-contamination set.

Fu(ϵ) =


Pu ∈ P(R)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Fu(µ) = Pu(u ≤ µ)

sup
µ∈R
∥Fu(µ)− Φ(µ)∥ ≤ ϵ

Fu(µ) = (1− ϵ)Φ(µ) + ϵH(µ)

H(µ) = 1−H(−µ), H(µ) is a distribution function on R


.

(2.52)
Note that supµ∈R ∥Fu(µ)−Φ(µ)∥ = supµ∈R ∥(1−ϵ)Φ(µ)+ϵH(µ)−Φ(µ)∥ = ϵ·supµ∈R ∥H(µ)−
Φ(µ)∥ ≤ ϵ (i.e., in this case the statistical metric is particularized into the infinity distance of
two functions). Suppose the random scalar z is an indicator and uniformly distributed in the
interval [0, 1]. Fu(µ) =

∫ µ
−∞

∫ 1
0 pu,z(τ, z)dzdτ = Φ(µ)I(z ≥ ϵ) +H(µ)I(z ≤ ϵ) = (1− ϵ)Φ(µ) +

ϵH(µ) where I(·) is the indicator function. Therefore, in (2.52), Fu(µ) = (1− ϵ)Φ(µ) + ϵH(µ)

means that with probability 1− ϵ the measurement innovation u (equivalently, a measurement
y) is from a nominal Gaussian distribution, and with probability ϵ it is from a contamination
(fat-tailed) distribution H(µ) (i.e., outlier). H(µ) = 1 − H(−µ) means that the density
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associated with H(µ) is symmetric about µ = 0.

2) ϵ-normal set.

Fu(ϵ) =


Pu ∈ P(R)

∣∣∣∣∣∣∣∣∣∣∣∣

Fu(µ) = Pu(u ≤ µ)

sup
µ∈R
∥Fu(µ)− Φ(µ)∥ ≤ ϵ

Fu(µ) = 1− Fu(−µ)


. (2.53)

Clearly, the ϵ-normal set is larger and more general than the ϵ-contamination set for the same
radius ϵ. However, we usually prefer the ϵ-contamination set because: 1) it has clearer physical
meaning than that of the ϵ-normal set; 2) in view of properties of real measurement data, the
least-favorable distribution in (2.52) is more reasonable than that in the ϵ-normal set; and 3)
the distributionally robust state estimator over the ϵ-contamination set is much easier to design.
Other possible choice for the structure of Fu(ϵ) includes the p-value set [97] which is also a
subset of (2.53), etc.

Recall that the distribution of the normalized innovation u is uniquely determined given the
distributions of the prior state x and the measurement noise v because u := S−1/2[H(x− cx) +
v]. Thus, when we admit the ϵ-contamination/normal deviation from the nominal Gaussian
distribution for u, we implicitly admit that the deviation is from the distribution(s) of x or v

or both. Since the ϵ-contamination/normal deviation studied here accounts for measurement
outliers, we argue that it is related to v and regardless of x. However, for technical simplicity in
problem solving, we work on u instead of v although directly on v might be intuitively more
understandable. Therefore, we would first design the distributions of x and u, and the value of
S. Then, we can obtain the distribution of v through v = S1/2u−H(x− cx). Specifically, S
controls the covariance of v, while u controls the type of v. In summary, we have Highlight 1.

Highlight 1. The measurement noise v suffers from two kinds of distributional uncertainties:

1) deviations imposed on mean and covariance [see (2.49), (2.50), and (2.51)];

2) deviations existing as outliers [see (2.52) and (2.53)].

However, the first one does not imply the second, and vice versa. They independently discredit
the nominal Gaussian assumption of v. The Item 1) modifies the first two moments of v, while
the Item 2) modifies the tails of v to be fat.12 □

Intuitively, Item 1) accounts for parameter uncertainty of Pv, while Item 2) for type uncertainty
of Pv; recall Introduction 1.1 for the concepts of different types of model uncertainties. Since
(2.49), (2.50), and (2.51) are mainly used to define the ambiguity sets for the outlier-unrelated

12One may also recall that y = S1/2u+Hcx. Hence, the type of the distribution of y (i.e., fat-tailed or not) is
only determined by the type of the distribution of u. Other distributions (e.g., the distribution of x), if involved,
only influence the parameter(s) of the distribution of y, regardless of its type.
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part of Pv (i.e., mean and covariance of v), taking Gaussianity assumption does not lead to
discrepancy. This is because any methods that are suitable to define the ambiguity sets for the
mean and covariance of v are acceptable. Hence, using (2.49), (2.50), and (2.51) is a practical
choice. Note that (2.49), (2.50), and (2.51) do not imply that the worst-case distribution of v is
Gaussian; instead, the worst-case distribution of v is determined by the worst-case distributions
of x and u, and the worst-case value of S through v = S1/2u−H(x− cx); see Theorem 8 and
especially its proof. Eqs. (2.49), (2.50), and (2.51) only mean that the outlier-unrelated part of
Pv is Gaussian; the three formulas are used to determine the worst-case value of S. Instead, the
outlier-related part of Pv is defined by the worst-case distribution of u, which is non-Gaussian.

As a consequence, the max-min problem (2.38) or (2.44) is equivalent to

max
Px∈Fx(θx), Pv∈Fv(θv), Pu∈Fu(ϵ)

TrP , (2.54)

where P is defined in (2.45); Fx(θx), Fv(θv), and Fu(ϵ) can be any types of ambiguity sets
available above.

Theorem 4. Consider the problem (2.54). The following statements are true.

1) Reformulations for Fx(θx).

a) In (2.46), cx = x̄ so that KL(Px∥P̄x) =
1
2

[
Tr
[
M−1Σx − I

]
− ln det (M−1Σx)

]
.

b) In (2.47), cx = x̄ so that W(Px, P̄x) =

√
Tr[Σx +M − 2(M

1
2ΣxM

1
2 )

1
2 ].

c) In (2.48), cx = x̄ so that Σx ⪯ θ2,xM and Σx ⪰ θ1,xM .

2) Reformulations for Fv(θv).

a) In (2.49), cv = 0 so that KL(Pv∥P̄v) =
1
2

[
Tr
[
R−1Σv − I

]
− ln det (R−1Σv)

]
.

b) In (2.50), cv = 0 so that W(Pv, P̄v) =

√
Tr[Σv +R− 2(R

1
2ΣvR

1
2 )

1
2 ].

c) In (2.51), cv = 0 so that Σv ⪯ θ2,vR and Σv ⪰ θ1,vR.

3) The problem (2.54) is equivalent to

max
Px∈Fx(θx)

max
Pv∈Fv(θv)

max
Pu∈Fu(ϵ)

TrP . (2.55)

The order of the three maximizations does not matter.

Proof. The estimation error covariance P in (2.54) does not depend on cx and cv. In order to
maximize P , the larger the feasible sets of Σx and Σv, the better. This leads to cx = x̄ and
cv = 0. Namely, the distributional uncertainty budgets θx and θv are completely assigned to
describe deviations of covariances of Px and Pv, respectively, regardless of cx or cv. This proves
the first two claims 1) and 2). The claim 3) is standard in the optimization community.
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Since the original (i.e., non-normalized) innovation s = y−Hcx =H(x− cx) + v, and x and v

are Gaussian and independent, the nominal value of S can be obtained as S =HΣxH
⊤ +Σv.

Let iµ ∈ R+ denote the Fisher information of pu(µ); iµ := E
[
− d2

dµ2 ln p(µ)
]
≥ 0; recall Definition

1. Comparing with (2.45), P in (2.55) can be written as

P = Σx −ΣxH
⊤(HΣxH

⊤ +Σv)
−1HΣx · iµ.

In view of the first two claims 1) and 2) in Theorem 4, we identify that Fx(θx) is parameterized
by Σx ∈ Sn+ and Fv(θv) is parameterized by Σv ∈ Sm++ (due to non-singularity of S). Hence,
(2.55) can be equivalently given as

max
Σx

max
Σv

max
iµ

TrP (2.56)

where the feasible sets of Σx and Σv are defined in Fx(θx) and Fv(θv), respectively. As a result,
we can solve the reformulated max-min problem (2.56) independently and sequentially, i.e.,
solving the innermost first and the outermost last.13

The following two lemmas solve the innermost sub-problem over iµ.

Lemma 1. The functional optimization over the ϵ-contamination ambiguity set

min
p(µ)

E

[
− d2

dµ2
ln p(µ)

∣∣∣∣
µ=u

]

s.t.



p(µ) =
dFu(µ)

dµ

sup
µ∈R
∥Fu(µ)− Φ(µ)∥ ≤ ϵ

Fu(µ) = (1− ϵ)Φ(µ) + ϵH(µ)

H(µ) = 1−H(−µ), H(µ) is a distribution function on R

is solved by the following least-favorable distribution

p(µ) =


(1− ϵ) 1√

2π
eKµ+ 1

2
K2
, µ ≤ −K

(1− ϵ) 1√
2π
e−

1
2
µ2
, |µ| ≤ K

(1− ϵ) 1√
2π
e−Kµ+ 1

2
K2
, µ ≥ K,

(2.57)

where the constant K ∈ R+ is implicitly defined by ϵ through
∫K
−K p(µ)dt+ 2p(K)

K = 1.

13Because in this order, the problem is easy to solve.
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Furthermore,

minE
[
− d2

dµ2
ln p(µ)

]
= (1− ϵ)[1− 2Φ(−K)].

Proof. See Appendix B.6.

Lemma 2. Given 0 ≤ ϵ ≲ 0.0303, the functional optimization over the ϵ-normal ambiguity set

min
p(µ)

E

[
− d2

dµ2
ln p(µ)

∣∣∣∣
µ=u

]

s.t.



p(µ) =
dFu(µ)

dµ

sup
µ∈R
∥Fu(µ)− Φ(µ)∥ ≤ ϵ

Fu(µ) = 1− Fu(−µ),

is solved by the following least-favorable distribution

p(µ) =


1√
2π
e−

1
2
a2 · cos−2(12ca) · cos

2(12cµ), 0 ≤ µ ≤ a

1√
2π
e−

1
2
µ2
, a ≤ µ ≤ b

1√
2π
e−

1
2
b2 · e−bµ+b2 , µ ≥ b

(2.58)

and p(µ) = p(−µ), where a, b, and c are implicitly defined by ϵ as

1) c tan(12ca) = a (0 ≤ ca < π),

2)
∫ a
0 p(µ)dµ =

∫ a
0 dΦ(µ)− ϵ,

3)
∫∞
b p(µ)dµ =

∫∞
b dΦ(µ) + ϵ.

Furthermore, minE
[
− d2

dµ2
ln p(µ)

]
=

c2a

cos2(12ca)
p(a) + 2Φ(b)− 2Φ(a).

Proof. See Appendix B.7.

Lemma 1 reveals that the least-favorable distribution under the ϵ-contamination distributional
uncertainty is Gaussian in the middle (i.e., when |µ| ≤ K) and is Laplacian in the tails (i.e.,
when µ ≥ K and µ ≤ −K), while Lemma 2 reveals that the least-favorable distribution under
the ϵ-normal distributional uncertainty is cos2(·)-like in the middle (i.e., when −a ≤ µ ≤ a), is
Gaussian in the transitions (i.e., when a ≤ µ ≤ b and −b ≤ µ ≤ −a), and is Laplacian in the
tails (i.e., when µ ≥ b and µ ≤ −b). The Laplacian (a.k.a. exponential) tails (i.e., fat tails)
explain outliers in measurements. We call them least-favorable distributions because they have
smallest Fisher information (i.e., largest asymptotic variance to estimate the mean) among
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distributions in Fu(ϵ). Although both are theoretically sound, we usually prefer the results in
Lemma 1 because they coincide well with our intuitions from practice that the main part of
measurements are normally distributed and only a small part of them are outliers. However,
the results in Lemma 2 become suitable when quantization noises are non-negligible (e.g., when
low-bit sampler is adopted), because quantization noise is close, but not equal, to zero.

Remark 4. In Lemma 2, we require that ϵ ≲ 0.0303 (n.b., for three real numbers, x ≲ z means
that x ≤ y and y ≈ z). This is a necessary condition to obtain the least-favorable distribution
in (2.58). Otherwise, the least-favorable distribution is of a different form; see [55, p. 85 ff.].
Usually, we do not prefer the solution when ϵ ≳ 0.0303 because the associated M-estimator has
significantly larger asymptotic variance; see [55, Exhibit 4.6]. Theoretically, only when the true
proportion of outliers is approximately smaller than 0.0303 can we use the solution in Lemma
2. However, in practice, the solution in Lemma 2 might not be sensitive to the true proportion
of outliers: no matter what the true proportion of outliers (of course, as long as less than
0.5) in the true measurements, keeping ϵ ≡ 0.0303 in our algorithm might not cause disasters.
This observation is also true for the solution in Lemma 1. This point will be illustrated in the
experiments in Subsection 2.3.5. □

After solving the innermost sub-problem of (2.56), we then study the outer sub-problems.

Theorem 5. The problem (2.56) is equivalent to

max
Σx

max
Σv

Tr
[
Σx −ΣxH

⊤(HΣxH
⊤ +Σv)

−1HΣx · imin
µ

]
, (2.59)

where

imin
µ := min iµ := minE

[
− d2

dµ2
ln p(µ)

]
is a constant defined in Lemma 1 or Lemma 2, whichever is adopted. Besides, 0 ≤ imin

µ ≤ 1.

Proof. Note that
ΣxH

⊤(HΣxH
⊤ +Σv)

−1HΣx ⪰ 0

because Σx ∈ Sn+ and Σv ∈ Sm++. Hence, the non-negative and minimal iµ maximizes P . In
addition, since the standard Gaussian is contained in the ϵ-contamination set and the ϵ-normal
set, imin

µ is upper bounded by the Fisher information of the standard Gaussian which is one.

Since we have three alternatives for Fx(θx), three for Fv(θv), and two for Fu(ϵ), in principle,
we need to solve the problem (2.54) eighteen times. As demonstrations and without loss of
generality, we suppose Fx(θx) and Fv(θv) have the same type of distributional uncertainty and
study the distributionally robust Bayesian estimation (DRBE) under Wasserstein ambiguity and
moment-based ambiguity, respectively.

Under Wasserstein ambiguities of Fx(θx) and Fv(θv), the problem (2.59) can be explicitly
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written as
max
Σx

max
Σv

Tr
[
Σx −ΣxH

⊤(HΣxH
⊤ +Σv)

−1HΣx · imin
µ

]
, (2.60)

subject to 

√
Tr

[
Σx +M − 2

(
M

1
2ΣxM

1
2

) 1
2

]
≤ θx√

Tr

[
Σv +R− 2

(
R

1
2ΣvR

1
2

) 1
2

]
≤ θv

Σx ⪰ 0

Σv ≻ 0.

(2.61)

This problem is difficult to solve as: 1) the objective is nonlinear, 2) the feasible set (2.61) is non-

convex because the function
√
· is concave and the constraint

√
Tr[Σx +M − 2(M

1
2ΣxM

1
2 )

1
2 ] ≤

θx is non-convex, so is the constraint for Σv. However, we can still reformulate it into a linear
semi-definite program (SDP) using some algebraic tricks. Solving a linear SDP is basic, although
still challenging, in the optimization community.

Theorem 6. Suppose R ≻ 0. The problem (2.60) subject to (2.61) is solvable and can be
reformulated into a linear SDP

max
Σx,Σv ,Vx,Vv ,U

Tr
[
Σx − imin

µ ·U
]
, (2.62)

subject to 

 U ΣxH
⊤

HΣx HΣxH
⊤ +Σv

 ⪰ 0

Tr [Σx +M − 2Vx] ≤ θ2x M 1
2ΣxM

1
2 Vx

Vx I

 ⪰ 0

Tr [Σv +R− 2Vv] ≤ θ2v R 1
2ΣvR

1
2 Vv

Vv I

 ⪰ 0

Σx ⪰ 0,Σv ≻ 0,Vx ⪰ 0,Vv ⪰ 0,U ⪰ 0.

(2.63)

Proof. See Appendix B.8.
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Under moment-based ambiguities of Fx(θx) and Fv(θv), the problem (2.59) can be explicitly
written as

max
Σx

max
Σv

Tr
[
Σx −ΣxH

⊤(HΣxH
⊤ +Σv)

−1HΣx · imin
µ

]
, (2.64)

subject to 

Σx ⪯ θ2,xM

Σx ⪰ θ1,xM

Σv ⪯ θ2,vR

Σv ⪰ θ1,vR ≻ 0

Σx ⪰ 0

Σv ≻ 0.

(2.65)

This problem is relatively easier to solve than (2.60) because the feasible set (2.65) consists of
linear constraints, implying convexity and compactness. Note that R ≻ 0 indicates Σv ≻ 0.
Therefore, it is solvable (i.e., the optimal solutions exist and are finite).

Theorem 7. The problem (2.64) subject to (2.65) is analytically solved by Σx = θ2,xM and
Σv = θ2,vR.

Proof. See Appendix B.9.

Comparing with conclusions in Theorem 2, Theorem 7 allows the measurement noise covariance,
and the process noise covariance and the estimation error covariance in the last time step to be
inflated with different levels. Specifically, the measurement noise covariance is improved by θ2,v,
while the process noise covariance and the estimation error covariance in the last time step are
improved by θ2,x; cf. (2.75).

It is also possible to jointly use the Wasserstein metric and the moment-based set, e.g., the
Wasserstein metric for Fx(θx) and the moment-based set for Fv(θv). The derivations are
straightforward and we do not cover the details.

As we can see, the max-min problem under the moment-based distributional uncertainties admits
attractive closed-form solutions which indicates high computational efficiency, especially for
large scale estimation problems when n and m are (extremely) large. As for the problem under
the Wasserstein metric, it requires solving a SDP which, although linear and solvable, is still
computationally challenging. From the viewpoint of modeling, using the Wasserstein metric
(2.61) [which is equivalent to (B.12) in Appendix B.8] or the moment-based set (2.65) just means
that the shapes of the feasible sets are different. Since both (B.12) and (2.65) are convex and
compact, for every Σx and Σv in (B.12), there exists θ1 ∈ R+, θ2 ∈ R+ for (2.65) such that
Σx and Σv are contained in (2.65). Conversely, for every Σx and Σv in (2.65), there exists
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θ ∈ R+ for (B.12) such that Σx and Σv are contained in (B.12). Therefore, in practice, we are
not entangled in which type of ambiguity set we should choose. We use the one under which
the problem is easy to solve. It is this reason that we do not study the problem under the KL
divergence ambiguity in this thesis. Because nonlinear functions, i.e., ln(·), det(·), in (2.46) and
(2.49) render the max-min problem being a general nonlinear SDP (without linear reformulations)
and difficult to solve. However, it is still convex and therefore solvable, since the constraints
1
2

[
Tr
[
M−1Σx − I

]
− ln det (M−1Σx)

]
≤ θx and 1

2

[
Tr
[
R−1Σv − I

]
− ln det (R−1Σv)

]
≤ θv

are convex. The convexity of the constraints is straightforward to show as: 1) Tr [·] is linear and
convex; 2) both ln (·) and det (·) are concave; 3) ln (·) is monotonically increasing. Nevertheless,
note that different ambiguity sets do give different robust state estimates. Therefore, in practice, if
computation powers allow, we should try all possible ambiguity sets to obtain better performance.

The theorem below summarizes the solution to the max-min problem (2.38).

Theorem 8. Suppose the nominal distribution of x is P̄x = Nn(x̄,M) and of v is P̄v =

Nm(0,R),R ≻ 0. With Gaussianity assumptions for elements in the ambiguity sets Fx(θx) and
Fv(θv), the max-min problem (2.38) is solved by

1. Optimal Estimator:

x̂ = x̄+Σ∗
xH

⊤S∗−1/2 ·ψ[S∗−1/2(y −Hx̄)], (2.66)

where S∗ :=HΣ∗
xH

⊤ +Σ∗
v, ψ(µ) is entry-wise identical and for each entry

ψ(µ) =


−K, µ ≤ −K

µ, |µ| ≤ K

K, µ ≥ K,

(2.67)

if the ϵ-contamination ambiguity set is used, or

ψ(µ) = −ψ(−µ) =


c tan(12cµ), 0 ≤ µ ≤ a

µ, a ≤ µ ≤ b

b, µ ≥ b,

(2.68)

if the ϵ-normal ambiguity set is used; Σ∗
x and Σ∗

v are the optimal solution of (2.62) if the
Wasserstein metric is used, or of (2.64) if the moment-based set is used.

2. Worst-Case Estimation Error Covariance:

P ∗ = Σ∗
x −Σ∗

xH
⊤(HΣ∗

xH
⊤ +Σ∗

v)
−1HΣ∗

x · imin
µ , (2.69)
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where
imin
µ = (1− ϵ)[1− 2Φ(−K)] (2.70)

if the ϵ-contamination ambiguity set is used, or

imin
µ =

c2a

cos2(12ca)
p(a) + 2Φ(b)− 2Φ(a) (2.71)

if the ϵ-normal ambiguity set is used. For parameters K, a, b, and c, see Lemmas 1 and 2.

3. Least-Favorable Distributions:

i) P∗
x = Nn(c

∗
x,Σ

∗
x), where c∗x = x̄.

ii) P∗
u is defined in (2.57) if the ϵ-contamination ambiguity set is used, or in (2.58) if the
ϵ-normal ambiguity set is used.

iii) P∗
v is determined by the convolution of P∗

u and P∗
x through v∗ = S∗ 1

2u∗ −H(x∗ − x̄),
where S∗ :=HΣ∗

xH
⊤ +Σ∗

v. Here, v∗ denotes the random vector associated with P∗
v.

Notations keep similar to u∗ and x∗.

Proof. See Appendix B.10.

As we can see from (2.66), there exists a nonlinear function ψ(·) in the estimator. It is used to
limit the influence that an outlier may bring to the estimator. Whenever y is large, the value of
ψ(·) is limted to ±K in (2.67) or ±b in (2.68). Hence, we term ψ(·) the influence function;
cf. Appendix A.4. In this sense, the state estimator x̂ in (2.66) is robust against measurement
outliers.

At last, we solve the min-max distributionally robust Bayesian estimation problem (2.35).

Theorem 9. Under Gaussianity assumptions for nominal distributions of x and v, the distribu-
tionally robust Bayesian estimation problem (2.35) admits the strong min-max property (i.e., the
saddle point property)

min
ϕ∈H′

y

max
P∈Fx,y(θ)

V (ϕ,P) = max
P∈Fx,y(θ)

min
ϕ∈H′

y

V (ϕ,P),

where V (ϕ,P) := TrE[x−ϕ(y)][x−ϕ(y)]⊤. Hence, the solutions to the max-min problem (2.38)
also solve the min-max problem (2.35).

Proof. See Appendix B.11.

So far we have solved the distributionally robust Bayesian estimation problem subject to
parameter uncertainties and measurement outliers. As a closing note, we mention that if we
were sure that there are no outliers in measurements, we would have another modeling trick
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to address the distributionally robust Bayesian estimation problem. The theorem below is an
outlier-free supplement to Theorem 8.

Theorem 10. If there are no outliers in measurements, we can directly model Px,y (or equiv-
alently Px,v) as a joint Gaussian distribution. In this special case, the ambiguity set admits
D(Px,y, P̄x,y) ≤ θ, parameterized by just one scalar θ. D(·, ·) can be any possible statistical
metric or divergence (e.g., Wasserstein metric, KL divergence, moment-based set). If x and y

are jointly Gaussian, the optimal estimate of x given y, i.e., E(x|y), has an affine form. Suppose
the worst-case distribution is

P∗
x,y = Nn+m


 c∗x
c∗y

 ,
 Σ∗

xx Σ∗
xy

Σ∗
yx Σ∗

yy


 .

We have the distributionally robust estimator as x̂ = c∗x +Σ∗
xyΣ

∗−1
yy (y − c∗y) and the worst-case

estimation error covariance as P ∗ = Σ∗
xx −Σ∗

xyΣ
∗−1
yy Σ∗

yx. Note that P∗
x,y can be obtained in

analogy to Theorem 6 if the Wasserstein metric is used, or to Theorem 7 if the moment-based
set is used.

Proof. This special case has been discussed in Section 2.2.

When outliers exist in measurements, we can no longer assume that x and y (or equivalently
x and v) are jointly Gaussian. We have to separately discuss the ambiguity sets for Px, Pv,
and Pu, respectively. Even when there are no outliers in measurements, separately designing
uncertainty sets for x and y (or equivalently x and v) offers us more flexibility if we have different
uncertainty levels towards them, because jointly modeling admits the same uncertainty levels.

2.3.2 Distributionally Robust State Estimation

With the results of distributionally robust Bayesian estimation developed in Section 2.3.1, this
section solves the state estimation problem (2.4) at the time k. We just need to identify the
nominal conditional prior distribution of the state given the past measurements, i.e., P̄xk|Yk−1

.
In our Gaussian approximation framework, P̄xk|Yk−1

is assumed to be Gaussian.

By (2.1), the nominal conditional prior distribution of the state xk given the last state xk−1 is

P̄xk|xk−1
= Nn

(
Fk−1xk−1, Gk−1Qk−1G

⊤
k−1

)
.

At the time k−1, suppose the distributionally robust posterior state estimate is E(xk−1|Yk−1) :=

x̂k−1|k−1 and the associated estimation error covariance is P ∗
k−1|k−1; the conditional distribution

of xk−1 given Yk−1 is Pxk−1|Yk−1
= Nn

(
x̂k−1|k−1, P

∗
k−1|k−1

)
. Therefore, the nominal conditional
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prior distribution of the state xk given Yk−1 is

P̄xk|Yk−1
(B) =

∫
Rn

P̄xk|xk−1=xk−1
(B) · Pxk−1|Yk−1

(dxk−1 | Yk−1), ∀B ∈ B(Rn), (2.72)

where B(Rn) denotes the Boreal σ-algebra on Rn (n.b., xk is a random vector on Rn).

Therefore,
P̄xk|Yk−1

= Nn

(
x̂k|k−1,Mk|k−1

)
, (2.73)

where
x̂k|k−1 = Fk−1x̂k−1|k−1 (2.74)

and
Mk|k−1 = Fk−1P

∗
k−1|k−1F

⊤
k−1 +Gk−1Qk−1G

⊤
k−1. (2.75)

The nominal distribution of the measurement noise vk is P̄vk|Yk−1
= P̄vk

= Nm(0,Rk) because
vk is independent of Yk−1.

Now it is sufficient to invoke the results in Theorem 8 to obtain the distributionally robust state
estimate x̂k|k at time k given yk.

Theorem 11. Suppose the radii of the ambiguity sets are ϵ ≥ 0, θx,k ≥ 0, θ2,x,k ≥ 1 ≥ θ1,x,k ≥ 0,
θv,k ≥ 0, θ2,v,k ≥ 1 ≥ θ1,v,k ≥ 0. At the time k, with the nominal Gaussian prior conditional
distribution of the state P̄xk|Yk−1

∼ Nn

(
x̂k|k−1,Mk|k−1

)
and the nominal Gaussian distribution

of the measurement noise P̄vk
= Nm(0,Rk), the distributionally robust state estimator x̂k|k given

yk is as follows.

1. Optimal Estimator.

x̂k|k = x̂k|k−1 +Σ∗
x,kH

⊤
k S

∗−1/2
k ·ψ[S∗−1/2

k sk], (2.76)

where sk := yk −Hkx̂k|k−1, x̂k|k−1 = Fk−1x̂k−1|k−1, and S∗
k :=HkΣ

∗
x,kH

⊤
k +Σ∗

v,k; ψ(·),
Σ∗
x,k, and Σ∗

v,k are defined in Theorem 8.

2. Worst-Case Estimation Error Covariance.

P ∗
k|k = Σ∗

x,k −Σ∗
x,kH

⊤
k S

∗−1
k HkΣ

∗
x,k · imin

µ , (2.77)

where imin
µ is defined in Theorem 8.

Proof. Compare with Theorem 8.

As we can see from (2.76), there exists an influence function ψ(·) to limit the influence that a
large-valued outlier may bring to the estimator.
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The distributionally robust estimator to the linear Markov system (2.1) is summarized in
Algorithm 2.2.

Algorithm 2.2: Distributionally Robust Estimator for Linear Systems Subject to Parameter

Uncertainty and Measurement Outlier

Definition: x̂k|k as the distributionally robust state estimator and x̂k|k the robust state

estimate when yk is specified; P ∗
k|k as the worst-case state estimation error covariance.

Initialize: x̂0|0, P ∗
0|0, ϵ, all involved θ as instructed in Theorem 11 (i.e., θx and θv if we

use the Wasserstein ambiguity sets, or θ2,x and θ2,v if we use the moment-based ambiguity

sets).

Remark: According to Theorem 7, θ1,x and θ1,v are irrelevant to this algorithm, and

therefore, not initialized. When yk has a realization yk, the estimator of xk, i.e., x̂k|k, gives

an estimate x̂k|k to xk.

Input :yk , k = 1, 2, 3, ...

1 while true do

2 // Time-Update Step, i.e., Prior Estimation

3 Use (2.74) and (2.75) to obtain x̂k|k−1 and Mk|k−1

4 // Obtain the Nominal Distributions

5 Use (2.73) to obtain P̄xk|Yk−1=Yk−1

6 P̄vk
← Nm(0,Rk)

7 // Obtain the Worst-Case Scenario

8 Use (2.70) or (2.71) to obtain imin
µ

9 Use (2.62) or (2.64) to obtain Σ∗
x,k and Σ∗

v,k

10 // Measurement-Update Step, i.e., Posterior Estimation

11 Use (2.76) and (2.77) to obtain x̂k|k and P ∗
k|k

12 // Next Time Step

13 k ← k + 1

14 end

Output : x̂k|k

The theorem below reveals relations among the proposed distributionally robust estimator and
the existing estimators.

Theorem 12. Concerning the distributionally robust state estimator in Algorithm 2.2, the
follows are true.

1) If we set ϵ = 0, θx = θv = 0, θ1,x = θ2,x = 1, θ1,v = θ2,v = 1, we obtain the canonical Kalman
filter.
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2) Under moment-based ambiguities, if we set ϵ = 0, θ2,x = θ2,v, we obtain the fading Kalman
filter [36,72].

3) The Student’s t Kalman filter in [93, Eq. (13)] amounts to a distributionally robust filter
because it is a fading Kalman filter whose fading factor is adaptively changeable.

4) Under moment-based ambiguities, if we set ϵ = 0, θ1,x = θ2,x = 1, we obtain the robust
Kalman filter in [127, Eq. (32)] that has an adaptive θ2,v.

5) Under ϵ-contamination ambiguity, if we set θx = θv = 0, θ1,x = θ2,x = 1, θ1,v = θ2,v = 1, we
obtain the M-estimation-based Kalman filter [97, Thm. 3].

6) When there are no outliers and the special case discussed in Theorem 10 is considered, if we
use the Wasserstein metric, we obtain the Wasserstein Kalman filter [91].

7) When there are no outliers and the special case discussed in Theorem 10 is considered, if we
use the KL divergence, we obtain the relative-entropy Kalman filter [89].

8) When there are no outliers in measurements and the special case discussed in Theorem 10 is
considered, if we use the τ -divergence, we obtain the τ -divergence Kalman filter [90].

9) The relative-entropy Kalman filter and the τ -divergence Kalman filter are risk-sensitive
Kalman filters [89,90].

Proof. In the case 1), all the ambiguity sets only contain nominal distributions. Hence, we have
Σ∗
x,k = Mk|k−1, Σ∗

v,k = Rk, ψ(µ) = µ, and imin
µ = 1, leading to the canonical Kalman filter.

In the case 2), if we assume θ = θ2,x = θ2,v, we have Σ∗
x,k = θMk|k−1, Σ∗

v,k = θRk, ψ(µ) = µ,
and imin

µ = 1, leading to P ∗
k|k = θ · Pk|k where Pk|k := Mk|k−1 −Mk|k−1H

⊤
k (HkMk|k−1H

⊤
k +

Rk)
−1HkMk|k−1. By comparing with [72], we obtain the fading Kalman filter. For other cases,

compare with the given references.

2.3.3 Computational Complexity

As we can see in Algorithm 2.2, the most computationally intensive step is to solve (2.62) to obtain
the worst-case scenario (i.e., Σ∗

x,k and Σ∗
v,k) under the Wasserstein ambiguity sets. Problem

(2.62) is a SDP which is numerically challenging to solve. Instead, if we use the moment-based
ambiguity sets, we need to solve (2.64) to obtain the worst-case scenario. However, (2.64) can be
analytically solved by Theorem 7. As a result, all the steps in Algorithm 2.2 have closed-form
solutions, implying that the computational complexity is no longer an issue. This is the reason
why we adopted the moment-based ambiguity sets throughout experiments.

Let r := max{n, p,m} where n is the dimension of the state vector xk, p of the process noise
vector wk, and m of the measurement vector yk. Since for a usual state estimation problem
n ≥ p and n ≥ m, it is well-known that the (asymptotic) computational complexity of the
canonical Kalman filter at each time step is O(r3) = O(n3); cf. Subsection 2.2.3. This is
because all computational operations at each time step of the Kalman filtering are just matrix
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addition/subtraction, matrix multiplicity, and matrix inverse; matrix multiplicity and matrix
inverse operations admit cubic order of computational complexity in terms of the dimensions
of the involved matrices. Therefore, likewise, the computational complexity of the proposed
method is also O(n3) at each time step, given that the moment-based ambiguity sets are used.

2.3.4 Comparisons with Existing Frameworks

Comparisons with existing frameworks addressing parameter uncertainties have been made in
Subsection 2.2.5. In this subsection, we only discuss existing frameworks addressing measurement
outliers.

When we unexpectedly see outliers in a nominal outlier-free population, we usually have two
philosophies. The first one is that we no longer believe the nominal population is outlier-
free. Instead, we take into account the outliers directly in modeling and correct the nominal
distribution into an outlier-aware one. Typical solutions include: 1) direct modeling, e.g.,
t-distribution, Laplacian distribution; 2) indirect modeling, e.g., Bayesian methods (e.g., if the
variance of a Gaussian distribution follows an inverse Gamma distribution, then the samples
from this variance-variant Gaussian distribution would follow a t-distribution). The second
one is that we still believe the population is outlier-free and treat seen outliers as aggressors
to be cleared/modified. Typical solutions are reported, in particular, by Frequentists, e.g., the
jackknife method.

The two philosophies can also be understood by leveraging the influence curve (a.k.a. influence
function; see Appendix A.4) [55,100,128]. Two kinds of influence curves are well-studied:

1) infinite-rejection-point influence curves, including all the monotonic influence curves (e.g.,
Huber’s [126]) and some re-descending influence curves that have infinite rejection points
(e.g., maximum-correntropy-criterion [99,129]).

2) finite-rejection-point influence curves, including some re-descending influence curves that
have finite rejection points (e.g., Hampel’s [55,100], Tukey’s Biweight [55], Andrew’s Sine [55],
IGG [130]).

When we use infinite-rejection-point influence curves, we implicitly accept outliers to be unstudied
samples and correct the nominal distribution to be heavy-tailed. For example, the influence
curve of an M-estimator at a t-distribution is a kind of re-descending influence curve but it has
infinite rejection-point [21, Fig. 1]. Contrarily, when we adopt finite-rejection-point influence
curves, we actually admit finite support of the nominal distribution and any sample outside of
this support would be treated as intruders and trashed.

Most of the existing state estimation frameworks under measurement outliers belong to one
of the two philosophies mentioned above. Note that in Bayesians, different from Frequentists,
influence curves are imposed on innovation vectors (i.e., difference between true measurement
and predicted measurement; cf. Theorem 8) rather than directly on measurement vectors; see,
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e.g., [97]. Below lists and discusses some typically existing outlier-insensitive state estimation
frameworks.

The earliest outlier-treatment method is the Gaussian-sum filter [20, 92], which uses heavy-
tailed distributions for measurements, and the non-Gaussian heavy-tailed distributions are
approximated by Gaussian sums. The demerit of this method is that it is computationally
intensive and, thus, inefficient.

A remedy methodology to the Gaussian-sum filter is typically the t-distribution Kalman filter
[93–95], which no longer uses a Gaussian sum to approximate the non-Gaussian measurement
noise. Instead, it directly uses heavy-tailed non-Gaussian distributions such as the t-distribution,
which explicitly explain the outliers. An indirect modeling trick is the Bayesian framework
that assumes the noise statistics matrix (i.e., R) is not exact and follows an inverse Wishart
distribution so that the measurements y from the linear observation y =Hx+ v would follow a
multivariate t-distribution, which implicitly accounts for outliers [21].

Another remedy methodology is directly working on designing proper influence functions [99,100],
which is also known as the weighted-least-square M-estimation-based Kalman filter [71, 98]. For
details, see Appendix A.4. In this category, the solutions for ψ(·) defined in Theorem 8 and
Theorem 11 are particularly popular. Other possible influence functions are the maximum-
correntropy-criterion (MCC) [129], IGG [130], Hampel’s [55,100], Tukey’s Biweight [55], Andrew’s
Sine [55], etc. However, note that they are derived from other motivations and might no longer
have clear perspectives of distributional robustness.

2.3.5 Experiments

In this section, we compare the state estimation performances of the existing filters and our newly
proposed filter for linear systems subject to parameter uncertainties and measurement outliers.
All the source data and codes are available online at GitHub: https://github.com/Spratm-

Asleaf/DRSE-Outlier. Interested readers can reproduce and/or verify the claims in this section
via changing the parameters or codes by themselves.

We continue studying the classical instance discussed in [27,89,91], i.e.,

F real
k =

 0.9802 0.0196 + α ·∆k

0 0.9802

 ,Gk =

 1 0

0 1

 ,Hk =

[
1 −1

]
,

Qk =

 1.9608 0.0195

0.0195 1.9605

 ,Rk =

[
1

]
,

where the random scalar ∆k ∈ U := [−1, 1] denotes the real perturbations imposed on the system
and U defines its support; α is a multiplicative coefficient. In this state estimation problem, the

https://github.com/Spratm-Asleaf/DRSE-Outlier
https://github.com/Spratm-Asleaf/DRSE-Outlier
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nominal system matrix is known as

Fk =

 0.9802 0.0196

0 0.9802

 .

Besides, we randomly add outliers for 5% measurements (i.e., we accordingly set ϵ = 0.05 in the
proposed method).

Candidate Filters

We implement the following filters to compare.

1. TMKF: the canonical Kalman filter with the true model. In the simulation we know
the underlying true model F real

k and the outlier-free true measurements. Therefore, this
method theoretically gives the best estimate of state in the sense of minimum estimation
error covariance;

2. KF: the canonical Kalman filter (with the nominal model Fk);

3. HKF: the outlier-insensitive Kalman filter based on the Huber’s influence function [97,99];

4. τ-KF: the τ -divergence Kalman filter [90];

5. WKF: the Wasserstein Kalman filter [91];

6. MKF: The moment-based distributionally robust state estimator (see Theorem 11). We
choose moment-based ambiguity sets because under them the problem is easier to solve
(than that under Wasserstein ambiguity sets).

Parameters Setting

Algorithm 2.2 requires to initialize the parameters ϵ and θ’s. Note that when ϵ is specified, K
in (2.67), and a, b, and c in (2.68) will be uniquely determined; see Lemmas 1 and 2 and their
proofs. Besides, if we use the Wasserstein ambiguity sets, we need to initialize θx and θv [see
(2.61)]. If we use the moment-based ambiguity sets, we need to initialize θ2,x and θ2,v [see (2.65)]
(n.b., Algorithm 2.2 is irrelevant to θ1,x and θ1,v).

In all methods, we set the initial state estimate as x̂0|0 = [0, 0]⊤ and its corresponding estimation
error covariance as P ∗

0|0 := diag{1, 1}, where diag{·} denotes a diagonal matrix [27,89,91]. All
parameters of each filter are directly taken from the original paper or tuned to perform (nearly)
best for the studied instance when ∆k randomly changes and α = 1.

In the Huber-based outlier-insensitive Kalman filter, we use K = 1.4 [see (2.67)], because when
ϵ is fixed to 0.05, K has to be 1.4 [cf. (2.57)]. In the τ -divergence Kalman filter [90], we set
τ = 0 (i.e., the τ -divergence filter specifies the Kullback-Leibler filter [89]), and the radius of the
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ambiguity set as 1.5× 10−4. In the Wasserstein Kalman filter [91], the radius of the ambiguity
set is set to 0.1. In the moment-based distributionally robust filter, we set θ2,x = θ2,v = 1.02,
and K = 1.4. Namely, the influence function in (2.67) is used.

Suppose each simulation episode runs T = 1000 discrete-time steps. The overall estimation error
of each episode is measured by the rooted mean square error (RMSE) as√√√√ 1

T

T∑
k=1

[(x1,k − x̂1,k)2 + (x2,k − x̂2,k)2],

where x1,k (resp. x2,k) is the first (resp. second) component of the state vector xk and x̂1,k (resp.
x̂2,k) denotes its estimate.

Results

Results are obtained by a laptop with 8G RAM and Intel(R) Core(TM) i7-8850H CPU @
2.60GHz. We conduct the following three experiments, respectively. First, let ∆k randomly take
its value according to the uniform distribution from its support U at each step k, and let α = 1.
However, in this simulation, we do not add outliers in the measurements. The results are shown
in Table 2.6. Second, let α = 0 (i.e., there are no parameter uncertainties). Nevertheless, we
add outliers for 5% measurements. The results are shown in Table 2.7. Third, both parameter
uncertainties and measurement outliers are considered as above. The results are shown in Table
2.8.

Table 2.6: Results when α = 1 but no outliers

Filter RMSE Avg Time Filter RMSE Avg Time

TMKF 3.25 1.41e-5 τ -KF [90] 9.90 25.25e-5

KF 14.52 7.51e-6 WKF [91] 9.95 132.24e-5

HKF [97] 14.74 1.22e-5 MKF[Ours] 9.91 1.23e-5

Avg Time: Average Execution Time at each time step (seconds);

1e-5: 1× 10−5; Note: TMKF gives theoretically optimal solution.

From Tables 2.6, 2.7, and 2.8, the following observations can be outlined. When there only exist
parameter uncertainties, the τ -divergence Kalman filter, the Wasserstein Kalman filter, and the
proposed moment-based distributionally robust state estimator are relatively robust, while the
Huber-based outlier-insensitive Kalman filter is not. In addition, the proposed moment-based
distributionally robust state estimator is preferable since it is computationally efficient. When
there only exist measurement outliers, the Huber-based outlier-insensitive Kalman filter is
roughly optimal as expected. However, the τ -divergence Kalman filter and the Wasserstein
Kalman filter perform badly, implying that they are not robust against measurement outliers.
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Table 2.7: Results when α = 0 and only outliers

Filter RMSE Avg Time Filter RMSE Avg Time

TMKF 7.64 1.36e-5 τ -KF [90] 19.41 26.43e-5

KF 16.14 7.82e-6 WKF [91] 16.56 125.55e-5

HKF [97] 7.70 1.39e-5 MKF[Ours] 8.19 1.20e-5

See Table 2.6 for table notes.

Table 2.8: Results when α = 1 and also outliers

Filter RMSE Avg Time Filter RMSE Avg Time

TMKF 3.23 1.40e-5 τ -KF [90] 22.15 25.76e-5

KF 21.04 7.31e-6 WKF [91] 16.94 126.52e-5

HKF [97] 16.14 1.26e-5 MKF[Ours] 11.72 1.16e-5

See Table 2.6 for table notes.

When both parameter uncertainties and measurement outliers exist, the proposed moment-based
distributionally robust state estimator works better than other candidate filters; i.e., it is robust
against both parameter uncertainties and measurement outliers. In Tables 2.6 and 2.8, the
performances of the proposed method are far away from those of the TMKF because a relatively
large uncertainty coefficient α is used (i.e., the true system model is far away from the nominal
one). When α is set to be small, the difference will reduce (cf. Table 2.7). This reminds us that
the robust filters are just remedial, but not once-for-all, solutions. In practice, continuing efforts
need to be put on improving the accuracy of the nominal model, unless the model accuracy
cannot be refined or robust solutions are satisfactory.

Sensitivity Analysis

In reality, it is hard to know the exact values of the true proportion of outliers (i.e., ϵ), and
the true uncertainty level of the nominal model (i.e., θx, θv, θ2,x, and θ2,v). They cannot be
learned to be optimal either because for a real system, the true state is unknown (i.e., training
data set is unavailable). Hence, we need to investigate whether the proposed algorithm is
sensitive to parameters ϵ and θ’s, and explore the prior knowledge of tuning them for a real
problem. Without loss of generality, we continue using the instance discussed above, where the
moment-based ambiguity sets are adopted. As before, we set θ2,x and θ2,v to be the same, and
θ2,x = θ2,v := θ2.
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First, we let α = 0 (i.e., no model uncertainty; specifically, no parameter uncertainty) and
only study the sensitivity against the true proportion of outliers. For the case that we use the
influence function in (2.67), we arbitrarily set ϵ = 0.01 so that K = 2; for the case that we use
the influence function in (2.68), we let ϵ = 0.03 so that a = 1.3496, b = 1.3496, and c = 1.2316.
Then, we let the real proportion of outliers ϵreal change from 0 to 0.5. We have the results in Fig.
2.4 (a). It shows that the proposed method is not sensitive to ϵreal. Thus, it is safe in practice
to keep the values of ϵ, K, a, b, and c recommended above regardless of ϵreal. (Other values are
also viable; readers can validate this claim using the shared source codes themselves.) Besides,
we show the breakdown properties of all the candidate filters. The results are shown in Fig. 2.5.
We see that the HKF is better than the MKF when there are no parameter uncertainties [cf.
Fig. 2.5 (a)], whereas the HKF is worse than the MKF when there exist parameter uncertainties
[cf. Fig. 2.5 (b)]. This is because the MKF is the robustified version of the HKF against general
model uncertainties (n.b., the MKF reduces to the HKF when θ2 := 0). Therefore, the price
of the robustness in uncertain conditions (when α ̸= 0) is sacrificing the optimality in perfect
conditions (when α = 0).

Second, we fix ϵreal = 0.05 and study the sensitivity against the true degree of the model
uncertainty. We let α = 1, and θ2 change from 1 to 1.1. We have the results in Fig. 2.4 (b). It
shows that the performance of the proposed method depends heavily on the value of θ2. If θ2 is
too small, the algorithm has no sufficient robustness against the uncertainty. Contrarily, if θ2 is
too large, the algorithm is too conservative to obtain a good performance as well. Therefore,
one should carefully (and pragmatically) tune this parameter to achieve good performances for
their specific real problems.
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(b) RMSE versus θ2

Figure 2.4: Sensitivity results over ϵreal and θ2.

Student’s t-Distributed Measurement Noise

In this subsection, we investigate the performances of the candidate filters for Student’s t-
distributed measurement noises. The degree of freedom of the used Student’s t-distribution is
set to be 3. But the covariance of measurement noise vk at each time step is kept unchanged
as Rk. Note that although the variance σ2 of a t-distribution is determined by its degree of
freedom ν through σ2 = ν

ν−2 for ν ≥ 3, it can be scaled by constant coefficients. For example,
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(a) Only outlier (α = 0)
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(b) Outlier + Uncertainty (α = 1)

Figure 2.5: Breakdown test against ϵreal with and without parameter uncertainty.

supposing a random variable t follows a t-distribution with degree of freedom ν, the variance of
the transformed random variable 1√

ν
ν−2

t is unit.

Parameters of the candidate filters are tuned to perform best, respectively, for this new instance.
(Details can be found in the shared source codes.) The results when only outliers exist are shown
in Table 2.9, while those when both parameter uncertainties and outliers exist are shown in
Table 2.10. Note that in this case, the TMKF designed for Gaussian-noise models is no longer
optimal for the t-noise true model (i.e., it reduces to the KF when α = 0).

Table 2.9: Results when α = 0 and only outliers (t-distributed)

Filter RMSE Avg Time Filter RMSE Avg Time

TMKF 6.38 1.58e-5 τ -KF [90] 7.07 26.00e-5

KF 6.38 1.18e-5 WKF [91] 6.80 121.51e-5

HKF [97] 6.38 1.66e-5 MKF[Ours] 6.72 1.31e-5

Table 2.10: Results when α = 1 and also outliers (t-distributed)

Filter RMSE Avg Time Filter RMSE Avg Time

TMKF 3.53 1.16e-5 τ -KF [90] 8.73 22.62e-5

KF 13.40 0.85e-5 WKF [91] 8.34 115.05-5

HKF [97] 13.75 1.25e-5 MKF[Ours] 8.40 1.28e-5

As we can see, when there are no parameter uncertainties (see Table 2.9), the TMKF, KF, and
HKF have the same performance, and the τ -KF, WKF, and MKF perform worse than them. In
other words, the Huber-based outlier-insensitive filter (HKF) no longer has advantage over the
KF. This is because the measurements subject to t-distributed measurement noises do not have
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significantly outstanding outliers; see Fig. 2.6. In contrast, in Fig. 2.7, we added significantly
outstanding outliers. The two cases are all common in signal processing practices. Therefore,
the outlier-robust methods (i.e., HKF and MKF) are more suitable for the cases where outliers
significantly exist. (But an estimator that is suitable/optimal to t-distributed measurement
noises might no longer be robust to other types of outliers, e.g., large-valued outliers.) Again, we
see the price of robustness under uncertain conditions is sacrificing the optimality under perfect
conditions because the MKF has larger RMSE than the HKF when there are no parameter
uncertainties.
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Figure 2.6: Measurements contaminated by t-distributed noises.
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Figure 2.7: Measurements contaminated by significant outliers.

When there exist parameter uncertainties (see Table 2.10), as expected, the τ -KF, WKF, and
MKF perform better because they are relatively robust against uncertainties. In this case, the
MKF has smaller RMSE than the HKF, which verifies the claim that the sacrifice of optimality
under perfect conditions might offer the robustness under uncertain conditions.

2.3.6 Section Conclusions

This section proposes the distributionally robust state estimation method that can account
for both parameter uncertainties and measurement outliers. It offers a new perspective to
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understand the robust state estimation problem under parameter uncertainties and measurement
outliers and generalizes several classic methods into a unified framework. It uses only a few
scalars to describe parameter uncertainties and measurement outliers and does not require
structural information of uncertainties, especially useful when we have limited trust towards
the nominal model and scarce knowledge about the uncertainties. Experiments show that the
proposed method under moment-based ambiguity sets outperforms existing methods, which is
not hard to expect because none of them is designed to simultaneously address both parameter
uncertainties and measurement outliers. Although the method might be insensitive to the true
proportion of outliers (i.e., the value of ϵ used in the algorithm does not significantly matter),
it is sensitive to the true uncertainty level of the nominal model (i.e., the values of θ’s used in
the algorithm significantly matter). Practitioners have to carefully try appropriate θ’s for their
specific problems (n.b., θ’s cannot be learned because the true state is unavailable). At last,
three closing remarks need to be outlined.

1) Robust filters are just remedial solutions. Reducing modeling uncertainties is always important.
Readers should not expect that the proposed method is optimal or satisfactory in all scenarios,
e.g., for a model with t-distributed measurement noises (which implies that the true model is
known).

2) The proposed outlier-robust filtering frameworks that use influence functions in Theorem 8
are more suitable for the cases that measurements contain significantly outstanding outliers
and for the case that the measurement noise models are unknown. If measurement noises
are t-distributed, it means that the system model is exactly known so that we can derive
optimal filters for t-distributed noises (theoretically, this is still possible no matter whether
the mathematical derivation is easy or not; cf. [95]). However, a filter that is optimal (or
suitable) for t-distributed noise is likely to lose robustness for other types of noises.

3) The robustness under uncertain conditions comes with the cost of sacrificing the optimality
under perfect conditions.
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From Theorem 5, Problem (2.60) subject to (2.61), and Problem (2.64) subject to (2.65), we
are motivated to find worst-case prior state distributions and worst-case likelihood distributions
(i.e., worst-case conditional measurement distributions given prior states) in robust Bayesian
estimation settings; cf. (1.7), (2.35), and (2.54). To be specific, Theorem 5 shows that by
raising variances of nominal Gaussian prior state distributions and nominal Gaussian likelihood
distributions, the robust state estimation can be obtained. Intuitively, we recall the Bayesian
posterior estimation principle:

p(x|y) ∝ p(y|x) · p(x).

Thus, if we trust more the prior distribution p(x) and doubt the likelihood distribution p(y|x),
we should let p(y|x) be noninformative/uncertain and make main use of p(x). Conversely, we
should let p(x) be noninformative/uncertain and mainly utilize p(y|x).

A natural measure of "uncertainty" of a random variable is entropy [131,132]. A large entropy
value implies that the distribution is not concentrated, and instead scattered/flat; i.e., we
are less certain about happenings. Therefore, an eligible method to quantify the "worst-case"
distribution is to use entropy; it is due to the principle of maximum entropy: "the probability
distribution which best represents the current state of knowledge about a system is the one
with largest entropy" [133]. Coincident with the implication of Theorem 5, the principle of
maximum entropy is also popular in robust Bayesian methods [134–136], especially in choosing
robust prior distributions [135,137].1 In this chapter, we utilize classical statistical metrics and
divergences, such as Wasserstein metrics and Kullback-Leibler divergence, to construct balls
containing a family of distributions near a nominal state prior distribution or near a nominal
likelihood distribution. Then, we find maximum entropy distributions in the balls to generate
new prior state particles and/or update their weights, and to evaluate the worst-case likelihoods
of these prior state particles. As a result, the worst-case posterior state particles are immediate
to be obtained by particle filters.

1According to [135, p.229], flat-tailed priors and noninformative priors can robustify a Bayesian statistical
method. In fact, maximum-entropy distributions tend to be flat-tailed because maximizing the entropy of a
variable (n.b., not fixed) distribution admits minimizing the Kullback–Leibler divergence of this distribution from
a uniform distribution [cf. (3.38)], and uniform distributions are most flat-tailed. Moreover, maximum-entropy
distributions also tend to be noninformative [136, Section 2.3].

69



Chapter 3. State Estimation for Nonlinear Systems 70

As we can see, this chapter does not describe robustness from the min-max perspective as in
Chapter 2. Instead, we directly pursue the original definition of robustness: a solution method
is robust to a model if this method is not sensitive to small model perturbations [100,128,138].
Note that although the min-max robustness is a popular perspective, it is not the unique one.

3.1 Problem Formulation

Motivated by (1.5), we consider a nonlinear-system state estimation problem
xk = fk(xk−1,wk−1)

yk = hk(xk,vk)

(3.1)

in which xk ∈ Rn is the state vector, yk ∈ Rm is the measurement vector, wk−1 ∈ Rp is the
process noise vector, vk ∈ Rq is the measurement noise vector, fk(·, ·) is the process dynamics
function, and hk(·, ·) is the measurement dynamics function; k = 1, 2, 3, ... denotes the discrete
time index. We assume that xk, yk, wk, and vk have finite second moments, and fk(·, ·) and
hk(·, ·) have finite operator norms (i.e., bounded inputs give bounded outputs). The task is
to estimate the hidden state vector xk based on the measurement set Yk. In this chapter, we
exclusively consider sequential Monte Carlo (i.e., particle filtering) methods as elucidated in
Introduction 1.

The first issue is that the nominal nonlinear system model (3.1) might be uncertain; recall
Introduction 1.1 for motivating details. Specifically, for given k, at least one of the process
dynamics function fk(·, ·), measurement dynamics function hk(·, ·), and types and/or parameters
of distributions of wk and vk might be inexact. In designing robust state estimation solutions that
are insensitive to these uncertainties, the challenge is quantifying and bounding such modeling
uncertainties. Special cases when (3.1) takes linear forms have been discussed in Chapter 2.
In this chapter, we exclusively investigate non-degenerate nonlinear cases. As measurements
yk sequentially arrive, we focus on a time-incremental state estimation problem: studying the
problem at every k given the measurement set Yk [46, 47]. Hence, it suffices to examine the
following single-stage Bayesian inference problem:

z ∼ Pxk−1|Yk−1

x = f(z,w)

y = h(x,v)

(3.2)

where z represents the conditional posterior state at k − 1 given the past measurement set Yk−1,
x := xk the state at k, y := yk the measurement at k, w := wk−1 the process noise at k− 1, and
v := vk the measurement noise at k; nominal distributions Pz, Pw, and Pv are known; nominal
nonlinear dynamics functions f(·, ·) and h(·, ·) are known as well. The time index k is dropped
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to avoid notational clutter. Note that z is random due to the randomness of Yk−1, but it is
non-random in terms of x and y; whenever Yk−1 = Yk−1 is specified, z = z becomes deterministic.
In particle filters, all involved distributions Pz, Pw, Pv, Px, and Py are represented/approximated
by particles; they are discrete. Specifically, e.g., p(z) :=

∑Nz
i=1 uzi ·δzi(z) where Nz is the number

of particles; particles zi are sampled from Pz and uzi are weights. Since uncertain process
dynamics (resp. uncertain measurement dynamics) would let the true prior state distribution Px

(resp. true likelihood distribution Py|x) deviate from the nominal prior state distribution (resp.
nominal likelihood distribution), particle filters can be robustified by considering that prior state
distributions (resp. likelihood distributions) are uncertain, and finding worst-case state priors
(resp. likelihoods). To be specific, we propose to find the worst-case prior state distribution
near the nominal prior state distribution P̄x to generate worst-case prior state particles xj .
Likewise, worst-case likelihood distributions near the nominal ones P̄y|xj are leveraged to evaluate
the worst-case likelihoods of prior state particles xj at the measurement y. The principle of
maximum entropy supports us to explore and exploit the maximum entropy distribution when
given limited information. Since the limited (i.e., inexact) prior state information is conveyed in
P̄x, the following optimization problem has to be solved:

max
p(x)∈L1

∫
−p(x) ln p(x)dx

s.t.


D(Px, P̄x) ≤ θ∫
p(x)dx = 1

(3.3)

where the objective is the entropy of Px whose density is p(x), and D(Px, P̄x) is a statistical
similarity measure between Px and P̄x. When Px is also assumed to be discrete [i.e., p(x) :=∑M

j=1 uxjδxj (x)], the following alternative problem needs to be solved:

max
p(x)∈l1

M∑
j=1

−p(xj) ln p(xj)

s.t.


D(Px, P̄x) ≤ θ∑

j p(x
j) = 1.

(3.4)

Note that the support sets of the uncertain priors p(x) :=
∑M

j=1 uxjδxj (x) and the nominal
prior p̄(x) :=

∑N
i=1 uxiδxi(x) may not be the same: p̄(x) is supported on {xi} for i ∈ [N ], while

p(x) is supported on {xj} for j ∈ [M ]. We call {xi}i∈[N ] the nominal prior state particles and
{xj}j∈[M ] the worst-case prior state particles. Suppose that p∗(x) solves (3.3). The worst-case
prior state particles xj can be sampled from p∗(x). If p∗(x) solves (3.4), xj are worst-case prior
state particles whose weights are p∗(xj), respectively.

The second issue is evaluating likelihoods of particles xj given the measurement y. When
measurement noises are additive [i.e., y = h(x) + v] or multiplicative [i.e., y = h(x) · v],
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the evaluation method is straightforward. For this reason, virtually all of the existing state-
estimation literature tacitly takes the premise of additive/multiplicative measurement noises,
which, however, is not always tenable in practice. This chapter, therefore, also aims to study a
likelihood evaluation method for a general nonlinear measurement dynamics. The philosophy
handling inexact likelihood information conveyed in nominal likelihood distributions p̄(y|xj) :=∑R

r=1 uyr|xjδyr|xj (y), ∀j ∈ [M ] keeps consistent. Specifically, for every j, we need to solve

max
p
y|xj (y)∈L1

∫
−py|xj (y) ln py|xj (y)dy

s.t.


D(Py|xj , P̄y|xj ) ≤ θ∫

py|xj (y)dy = 1

(3.5)

or its discrete version

max
p
y|xj (y)∈l1

T∑
t=1

−py|xj (yt) ln py|xj (yt)

s.t.


D(Py|xj , P̄y|xj ) ≤ θ∑

t py|xj (yt) = 1.

(3.6)

Likewise, the support sets of the uncertain likelihood distributions py|xj (y) :=
∑T

t=1 uyt|xjδyt|xj (y)

and the nominal likelihood distributions p̄y|xj (y) :=
∑R

r=1 uyr|xjδyr|xj (y) may not be the same:
py|xj (y) is supported on {yt} for t ∈ [T ], while p̄y|xj (y) is supported on {yr} for r ∈ [R]. We
call {yr}r∈[R] the nominal likelihood particles and {yt}t∈[T ] the worst-case likelihood particles.
Suppose that p∗

y|xj (y) solves (3.5). The worst-case likelihood of the prior state particle xj given
the measurement y can be evaluated by p∗

y|xj (y). Instead, if p∗
y|xj (y) solves (3.6) and one of yt

is the same as the given measurement y, the worst-case likelihood of the prior state particle xj

given the measurement y can be evaluated by p∗
y|xj (y

t). This is possible because we can let the
collected y be a supporting point to solve (3.6); i.e., y ∈ {yt}t∈[T ]. Note that the support set
{yt}t∈[T ] is specified by filter designers.

The third issue is to identify possible outliers in measurements and take actions to remove or
attenuate them [58]. Motivated by the M-estimation theory [55], we claim that this can be
done by evaluating the likelihoods of prior state particles at the given measurement: if the
largest likelihood of the prior state particles is smaller than a threshold (e.g., 5%), we treat this
measurement as an outlier because there exists no any prior state particle that can possibly
generate this measurement. Then, this measurement can be directly trashed and all prior state
particles directly become posterior (cf. re-descending influence functions, e.g., Hampel’s [55, Eq.
(4.90)], in M-estimation). This measurement can also be replaced by the nearest likelihood
particle generated by the prior state particle that has the largest likelihood (cf. monotonic
influence functions, e.g., Huber’s [55, Eq. (4.53)], in M-estimation).

To the core, this chapter needs to find solutions of (3.3), (3.4), (3.5), and (3.6). In the following
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sections, we first explicitly choose eligible forms of the statistical similarity measure D(·, ·).
Then, we find maximum entropy distributions for generating worst-case prior state particles and
evaluating their worst-case likelihoods. Third, we identify and handle measurement outliers. At
last, the overall distributionally robust state estimation framework for nonlinear systems will be
outlined.

3.2 Find Maximum Entropy Distributions

Mathematically, (3.3) and (3.5) are the same problem, so are (3.4) and (3.6). The former is
a maximum entropy problem for a continuous distribution family given a discrete reference
distribution, while the latter is a maximum entropy problem for a discrete distribution family
given a discrete reference distribution. Therefore, for notation simplicity, we investigate a unified
form for (3.3) and (3.5):

max
p(x)∈L1

∫
−p(x) ln p(x)dx

s.t.


D[p(x), q(x)] ≤ θ∫

p(x)dx = 1

(3.7)

where q(x) =
∑N

i=1 uxiδxi(x) is a N -point discrete reference distribution whose probability
measure is Qx. Likewise, supposing p(x) =

∑M
j=1 uxjδxj (x) is a M -point discrete distribution

whose probability measure is Px, the unified form for (3.4) and (3.6) is

max
p∈l1

M∑
j=1

−pj ln pj

s.t.


D[p, q] ≤ θ∑M

j=1 pj = 1

(3.8)

where pj := uxj , qi := uxi , p := [p1, p2, ..., pj , ...pM ]⊤, and q := [q1, q2, ..., qi, ...qN ]⊤. In (3.8),
M might be equal to N but this is not always the case. Besides, even when M = N , Px and
Qx can be supported on different discrete points; the former is {xj}j=1,2,...,M and the latter is
{xi}i=1,2,...,N .

Therefore, it suffices to consider only (3.7) and (3.8) in this section. In state-of-the-art distribu-
tionally robust optimization literature, the most commonly adopted statistical similarity measures
are moments-based similarity [120,139], Wasserstein distance [56], and ϕ-divergence [125]. We
will find the solutions to (3.7) and (3.8) based on these three statistical similarity measures,
respectively. In the following sections, to avoid notational clutter, we no longer emphasize that
a density p(·) ∈ L1 or a mass p(·) ∈ l1; they are implicitly admitted instead.
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3.2.1 Solutions Using Moments-Based Similarity

Moments-Based statistical similarity claims that two random vectors are similar (in distribution)
if they have similar moments up to the order of O (e.g., when O = 2, two random vectors have the
same mean and covariance). This measure is also widely used in information theory [132, Chapter
11]. The maximum entropy solutions to (3.7) and (3.8) using moments-based similarity are,
therefore, hardly new. We repeat them because from which we can cast new insights into
Gaussian approximation state estimators. Note that the moments of the discrete reference
distribution Qx can be estimated from its particles (using any eligible approaches, e.g., weighted
sample mean and weighted sample covariance). Suppose the first two sample moments of Qx

are given by µ̂x :=
∑N

i=1 uxi · xi and Σ̂x :=
∑N

i=1 uxi · (xi − µ̂x)(xi − µ̂x)⊤, respectively.

Solution to (3.7)

The theorem below gives the continuous maximum entropy distribution when the first two
moments are specified.

Theorem 13 (Theorem 9.6.5 [132]). If the first two moments of an absolutely continuous
distribution Px are µ̂x and Σ̂x, respectively, then the maximum entropy of Px is obtained by a
Gaussian with mean µ̂x and covariance Σ̂x.

Proof. See [132, Theorem 9.6.5] or [140, Theorem 4.1.2]. Note that a Gaussian distribution is
translation-invariant, and absolute continuity of Px implies the existence of its density almost
everywhere.

Theorem 13 can be extended to take into account higher order moments; see [132, Section 11.1].
We do not consider moments with orders equal to or higher than 3 because they are tensors for
multivariate problems, and they are unnecessary for this thesis’s contexts. Theorem 13 reveals
the distributional robustness of the Gaussian approximation state estimation framework.

Corollary 4. The Gaussian approximation state estimation framework for nonlinear systems is
distributionally robust in the sense that it uses maximum entropy distributions for prior states
and their likelihoods. □

Corollary 4 implies that when the nominal nonlinear system model is uncertain, Gaussian
approximation filters, such as Unscented Kalman filter (UKF), Cubature Kalman filter (CKF),
and Ensemble Kalman filter (EnKF) might outperform general particle filters. The benefit of
such Gaussian approximation is that the induced filters (UKF, CKF, EnKF, etc.) are, strictly
speaking, no longer computationally-intensive sequential Monte Carlo methods because they
do not store prior state particles and explicitly evaluate their likelihoods. Instead, states and
measurements are assumed to be marginally Gaussian and also jointly Gaussian, and therefore,
closed-form solutions (i.e., canonical Kalman iterations) are applicable, which are computationally
attractive.
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In this sense, the philosophy of Gaussian approximation can also be applied in general particle
filtering procedure. Specifically, we first sample (worst-case) prior state particles from the found
maximum-entropy Gaussian prior state distribution, and then evaluate their likelihoods using the
found maximum-entropy Gaussian likelihood distributions. Finally, the posterior state particles
can be generated. In fact, it is also possible to directly discover a discrete maximum-entropy
Gaussian distribution supported on {xj}j=1,2,...,M without sampling from a continuous Gaussian.

Solution to (3.8)

In this subsection, we discuss the discrete maximum entropy distribution that is supported on
the discrete set {xj}j=1,2,...,M , when the first two moments µ̂x and Σ̂x are fixed.

Theorem 14. Among all discrete distributions supported on {xj}j=1,2,...,M with first two mo-
ments µ̂x and Σ̂x, the maximum entropy distribution is

pj = exp{−1− γ − λ⊤xj − (xj − µ̂x)⊤Λ⊤(xj − µ̂x)}, (3.9)

∀j ∈ [M ], where γ ∈ R1, λ ∈ Rn, and Λ ∈ Rn×n are determined by the following three equalities

∑M
j=1 pj = 1,∑M

j=1 x
j · pj = µ̂x,∑M

j=1(x
j − µ̂x)(xj − µ̂x)⊤ · pj = Σ̂x.

(3.10)

Proof. Applying the Lagrange multiplier method to (3.8), the statements are immediate.

Theorem 14 gives the worst-case weights of particles xj ; i.e., uxj = pj . Therefore, particles
xj together with their weights uxj represent a worst-case prior state distribution [cf. (3.4)] or
a worst-case likelihood distribution [cf. (3.6)]. The nonlinear root-finding problem (3.10) is,
however, complicated even when only the first two moments are considered and only equalities
are involved. If higher order moments and inequalities exist in (3.8), the complexity would
be inconceivable (due to, e.g., tensors). However, the solution of (3.10) is just theoretically
meaningful. In practice, when we take Gaussian assumption, it is pointless to store particles and
evaluate their likelihoods; we prefer to apply canonical closed-form Kalman iterations.

3.2.2 Solutions Using Wasserstein Distance

The definition of Wasserstein distance can be revisited in (2.27). The benefit to use Wasserstein
distance is that it does not require the two involved distributions to have the same support.
In other words, it is possible that either Px or Qx is continuous and the other one is discrete.
Besides, the Wasserstein distance can also implicitly take higher-order-moment information of
random vectors into consideration, unlike the Gaussian assumption that only focuses on the first
two moments. In this section, as claimed, Qx is discrete and supported on {xi}i=1,2,...,N .
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Solution to (3.7)

Let Πa,b denote any possible product measures (i.e., joint distributions) whose marginals are
Px and Qx; a is the random vector associated with Px, while b is with Qx. Suppose Px and
Πa,b are absolutely continuous, and the density of Πa,b is π(xP,xQ); π(xP,xQ) = I(xQ|xP)p(xP)

where I(xQ|xP) is the conditional density. We solve (3.7) using the Wasserstein distance. Hence,
(3.7) can be written as

max
p(x)

∫
−p(x) ln p(x)dx

s.t.


inf

π(xP,xQ)

∫∫
∥xP − xQ∥π(xP,xQ)dxPdxQ ≤ θ∫

p(x)dx = 1.

(3.11)

Note that p(xP) = p(x) and p(xQ) = q(x).

We first study the constraint infπ(xP,xQ)

∫∫
∥xP − xQ∥π(xP,xQ)dxPdxQ ≤ θ. The infimum

optimization problem on the left hand side of this constraint is functional and infinite-dimensional.
Therefore, we aim to transform it into a vector-valued and finite-dimensional equivalent.

Lemma 3. The infinite-dimensional optimization problem

inf
π(xP,xQ)

∫∫
∥xP − xQ∥π(xP,xQ)dxPdxQ

is equivalent to a finite-dimensional optimization problem

max
λ

∫
p(x) min

i∈[N ]
{∥x− xi∥ − λi}dx+

N∑
i=1

qiλi, (3.12)

where λ := [λ1, λ2, ..., λN ]⊤ and ∀i ∈ [N ], λi ∈ R1.

Proof. See Appendix C.1.

We identify that (3.12) is a continuous-region partitioning problem for optimal transport [141];
intuitions can be found in Appendix C.1. Specifically, (3.12) is equivalent to

max
λ

∫
p(x)σ(x)dx+

N∑
i=1

qiλi

s.t.


σ(x) = mini∈[N ]{∥x− xi∥ − λi} ≤ ∥x− xi∥ − λi, ∀i ∈ [N ],

σ(x) ≥ 0,

(3.13)

which has the same form with [141, Eq. (5)]. Note that in [141, Eq. (4)], an auxiliary variable t
was used, which introduced λi to [141, Eq. (5)]. (In [141], if t were cancelled, λi would disappear.)
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Note also that in [141], a generic measure dA was used. In the contexts of this section, it is
instantiated to dA := p(x)dx. Therefore, for any given p(x) and q(x) =

∑
i qiδxi(x), an optimal

partition exist [141]. For illustration, see Fig. 3.1, in which we suppose that p(x) and q(x) are
distributed over the whole rectangular region. However, q(x) is discrete (N = 9), and supported
on nine red dots. The optimal solution states that the optimal transport plan is to move all
density of p(x) in Ci to its centre xi. In other words, any density outside of Ci will strictly
not be accepted at xi. Intuitively, this renders

∫
I(xi|x)p(x)dx = qi, ∀i ∈ [N ], and I(xi|x)

is in fact an indicator: I(xi|x) = 1 if x ∈ Ci and I(xi|x) = 0 otherwise (cf. Appendix C.1).
Therefore,

∫
Rn p(x)dx =

∑N
i=1

∫
Ci
p(x)dx =

∑N
i=1 qi = 1.

x1x1

x3x3

x4x4 x5x5

x6x6

x2x2

x9x9

x8x8

x7x7

Figure 3.1: The whole rectangular region C is divided into 9 sub-regions C1, C2, ..., and C9

whose centres (red dots) are x1, x2, ..., and x9, respectively. Boundaries of sub-regions are
marked by dashed lines.

Lemma 3 transforms (3.11) to

max
p(x)

∫
−p(x) ln p(x)dx

s.t.
max
λ

∫
p(x) min

i∈[N ]

{
∥x− xi∥ − λi

}
dx+

N∑
i=1

qiλi ≤ θ∫
p(x)dx = 1.

(3.14)

The solution to problem (3.14) is given in theorem below.

Theorem 15. The maximum entropy distribution solving (3.14) is

p(x) = exp

{
−v0 min

i∈[N ]

{
∥x− xi∥ − λi

}
− v1 − 1

}
(3.15)

where v0 ∈ R1, v1 ∈ R1, and λi ∈ R1, ∀i solve the following convex and smooth problem (n.b.,
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almost-everywhere smooth in terms of λi; non-smooth only on zero-measure boundaries):

min
v0,v1,λ

v0 · (θ −
∑N

i=1 λiqi) + v1 +

∫
exp

{
−v0 min

i∈[N ]

{
∥x− xi∥ − λi

}
− v1 − 1

}
dx

s.t. v0 ≥ 0,

(3.16)

where λ := [λ1, λ2, ..., λN ]⊤.

Proof. See Appendix C.2.

Suppose that v∗0, v
∗
1, and λ∗ solve (3.16). We claim that p(x) in (3.15) admits

p(x) = exp
{
−v∗0 ·

{
∥x− xi∥ − λ∗i

}
− v∗1 − 1

}
, ∀x ∈ Ci, (3.17)

where the sub-region/sub-space Ci is defined by

Ci :=
{
x ∈ Rn| ∥x− xi∥ − λ∗i ≤ ∥x− xj∥ − λ∗j

}
, ∀j ̸= i.

Note that {Ci}i=1,2,...,N are collectively exhaustive and mutually exclusive; Ci
⋂
Cj = ∅,∀i ̸= j

and Rn =
⋃N

i=1Ci.

Since (3.16) is convex2 and smooth3, it can be solved using any first-order method (e.g., projected
gradient descent). Let the objective of (3.16) be fW−C(v0, v1,λ); the subscripts "W" is for
"Wasserstein" and "C" for "Continuous". By letting g(x,λ) := mini∈[N ]

{
∥x− xi∥ − λi

}
, the

gradients of fW−C(v0, v1,λ) with respect to v0, v1, and λi are, respectively,

∂fW−C

∂v0
= θ −

N∑
i=1

λiqi −
∫
Rn

g(x,λ) exp{−v0g(x,λ)− v1 − 1}dx, (3.18)

∂fW−C

∂v1
= 1−

∫
Rn

exp{−v0g(x,λ)− v1 − 1}dx, (3.19)

and
∂fW−C

∂λi
= −v0qi + v0

∫
Ci

exp{−v0g(x,λ)− v1 − 1}dx,

= −v0qi + v0

∫
Ci

exp{−v0(∥x− xi∥ − λi)− v1 − 1}dx.
(3.20)

When the optimality reaches (i.e., all gradients vanish), (3.18) implies that the Wasserstein

2In the Lagrange duality sense, dual problems of any primal problems are always concave (resp. convex), no
matter whether the primal problems are convex (resp. concave) or not [142, Chapter 5]. One can verify this point
on (3.16) themselves by the definition of convexity. Note that for every two bounded functions f1 and f2 that
have the same support, min(f1 + f2) ≥ min f1 +min f2.

3Non-smoothness over Lebesgue zero-measure subsets does not matter. Whenever necessary, one can use
sub-gradients instead.
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distance is strictly equal to the prescribed budget θ, (3.19) indicates that p(x) in (3.15) is indeed
a density that is integrated to unit, and (3.20) means that a partition for optimal transport
exists (i.e.,

∫
Ci
p(x)dx = qi). The projection step is straightforward in the gradient descent

procedure: whenever v0 < 0, let v0 = 0.

In the projected gradient descent procedure, all involved integrals can be approximated by
numerical methods, e.g., global adaptive quadrature [143] or Monte Carlo integration [144,145],
whichever is easier to be implemented for specific problems.

Solution to (3.8)

Suppose Px is also discrete and supported on {xj}j=1,2,...,M . We solve (3.8) using the Wasserstein
distance. Hence, (3.8) can be written as

max
p

M∑
j=1

−pj ln pj

s.t.


inf

π(xP,xQ)

∫∫
∥xP − xQ∥π(xP,xQ)dxPdxQ ≤ θ∑M

j=1 pj = 1,

(3.21)

where p := [p1, p2, ..., pj , ..., pM ]⊤.

We first study the constraint infπ(xP,xQ)

∫∫
∥xP−xQ∥π(xP,xQ)dxPdxQ ≤ θ. In fact, the infimum

optimization problem on the left hand side of this constraint can be reformulated.

Lemma 4. If both Px and Qx are discrete, and supported on {xj}j=1,2,...,M and {xi}i=1,2,...,N ,
respectively, the Wasserstein distance infπ(xP,xQ)

∫∫
∥xP − xQ∥π(xP,xQ)dxPdxQ is equivalent to

a linear program

minPij

∑N
i=1

∑M
j=1 ∥xi − xj∥ · Pij

s.t.



∑M
j=1 Pij = qi, ∀i ∈ [N ],∑N
i=1 Pij = pj , ∀j ∈ [M ],

Pij ≥ 0, ∀i ∈ [N ],∀j ∈ [M ].

(3.22)

In (3.22), Pij denotes a joint discrete distribution supported on {(xi,xj)}i∈[N ],j∈[M ].

Proof. See Appendix C.3.

Intuitively, (3.22) can also be seen as an optimal transport problem (cf. Lemma 3 and Fig. 3.1):
resources are discretely distributed on some given points xj , whereas facilities are fixed at xi.
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Lemma 4 transforms (3.21) to

max
p

M∑
j=1

−pj ln pj

s.t.



min
Pij

N∑
i=1

M∑
j=1

∥xi − xj∥ · Pij ≤ θ

∑M
j=1 Pij = qi, ∀i ∈ [N ],∑N
i=1 Pij = pj , ∀j ∈ [M ],

Pij ≥ 0, ∀i ∈ [N ], ∀j ∈ [M ].

(3.23)

The constraint
∑M

j=1 pj = 1 is dropped because it is redundant to (3.23).

Since the left hand side of the first constraint is a minimization problem, we can directly drop
the minimization. Thus, (3.23) is equivalent to

max
Pij

−
N∑
i=1

M∑
j=1

Pij ln
N∑
i=1

Pij

s.t.



∑N
i=1

∑M
j=1 ∥xi − xj∥ · Pij ≤ θ∑M

j=1 Pij = qi, ∀i ∈ [N ],

Pij ≥ 0, ∀i ∈ [N ], ∀j ∈ [M ].

(3.24)

The solution to problem (3.24) is given in theorem below.

Theorem 16. If there exists a discrete distribution {P 0
ij}∀i,∀j that strictly satisfies the inequality∑N

i=1

∑M
j=1 ∥xi − xj∥ · P 0

ij < θ and simultaneously satisfies the equality
∑M

j=1 P
0
ij = qi, the

maximum entropy distribution solving (3.24) also solves

min
v0,λ

max
Pij

v0θ +

N∑
i=1

λiqi +

N∑
i=1

M∑
j=1

P 2
ij∑N

i=1 Pij

s.t.


− ln(

∑N
i=1 Pij)− Pij∑N

i=1 Pij
− v0∥xi − xj∥ − λi = 0, ∀i ∈ [N ], ∀j ∈ [M ],

Pij ≥ 0, ∀i ∈ [N ], ∀j ∈ [M ],

v0 ≥ 0,

(3.25)
where λ := [λ1, λ2, ..., λN ]⊤.

Proof. See Appendix C.4.
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The problem (3.25) is intuitively uneasy to be solved because Pij has no closed-form expression.
Therefore, we try to relax the original maximum entropy problem (3.24). Since the entropy of a
joint distribution is no larger than the sum of the entropy of marginals [132, Theorem 2.6.6]; i.e.,

−
N∑
i=1

M∑
j=1

Pij lnPij ≤ −
M∑
j=1

pj ln pj −
N∑
i=1

qi ln qi

and −
∑N

i=1 qi ln qi is a constant, we can use the entropy of the join distribution as a surrogate
for optimization. Whenever the entropy of the join distribution is maximized, the entropy of
p(x) is improved as well. [Of course, under this approximation, the entropy of p(x) induced
from the optimal Pij is not guaranteed to be maximal as in (3.23).] As a result, (3.24) can be
relaxed as follows.

max
Pij

−
N∑
i=1

M∑
j=1

Pij lnPij

s.t.


∑N

i=1

∑M
j=1 ∥xi − xj∥ · Pij ≤ θ∑M

j=1 Pij = qi, ∀i ∈ [N ].

(3.26)

The solution to (3.26) is given in the theorem below.

Theorem 17. If there exists a discrete distribution {P 0
ij}∀i,∀j that strictly satisfies the inequality∑N

i=1

∑M
j=1 ∥xi − xj∥ · P 0

ij < θ and simultaneously satisfies the equality
∑M

j=1 P
0
ij = qi, then the

maximum entropy distribution solving (3.26) is

Pij = exp
{
−v0∥xi − xj∥ − λi − 1

}
, ∀i ∈ [N ], ∀j ∈ [M ], (3.27)

where v0 ∈ R1 and λi ∈ R1, ∀i solve the following convex and smooth problem:

min
v0,λ

v0 · θ +
N∑
i=1

λiqi +
N∑
i=1

M∑
j=1

exp
{
−v0∥xi − xj∥ − λi − 1

}
s.t. v0 ≥ 0,

(3.28)

where λ := [λ1, λ2, ..., λN ]⊤. Moreover, the marginal distribution is pj =
∑N

i=1 Pij , ∀j ∈ [M ].

Proof. Similar to the proof of Theorem 16.

Since (3.28) is convex and smooth, it can be solved using any first-order method (e.g., projected
gradient descent). Let the objective of (3.28) be fW−D(v0,λ); the subscripts "W" is for
"Wasserstein" and "D" for "Discrete". The gradients of fW−D(v0,λ) with respect to v0 and λi
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are, respectively,

∂fW−D

∂v0
= θ −

N∑
i=1

M∑
j=1

∥xi − xj∥ exp
{
−v0∥xi − xj∥ − λi − 1

}
, (3.29)

and
∂fW−D

∂λi
= qi −

M∑
j=1

exp
{
−v0∥xi − xj∥ − λi − 1

}
. (3.30)

Likewise, when all gradients vanish, the minimum transport cost coincides with the prescribed
Wasserstein budget θ, and an (discrete-version) optimal transport exists (i.e., qi =

∑M
j=1 Pij).

The projection step is straightforward in the gradient descent procedure: whenever v0 < 0, let
v0 = 0.

3.2.3 Solutions Using ϕ-Divergence

Suppose Px and Qx have the same support S. If Px and Qx are absolutely continuous with
respect to the Lebesgue measure and Px is absolutely continuous with respect to Qx, then the
ϕ-Divergence of Px from Qx is defined as∫

S
ϕ

(
dPx

dQx

)
dQx =

∫
S
ϕ

(
p(x)

q(x)

)
q(x)dx, (3.31)

where ϕ(t), t ≥ 0 is a convex function such that ϕ(1) := 0 and 0ϕ(0/0) := 0; dPx/dQx is the
Radon-Nikodym derivative. Alternatively, if Px and Qx are discrete on the same support, the
ϕ-divergence of p from q is defined as

N∑
i=1

qiϕ

(
pi
qi

)
. (3.32)

The ϕ-divergence is a generalization of the Kullback-Leibler divergence. Letting ϕ(t) := t ln t or
ϕ(t) := t ln t − t+ 1, the ϕ-divergence degenerates to the Kullback-Leibler divergence. Other
possible choice of ϕ(t) can be found in, e.g., [125, Table 2]. For the demonstration purpose only,
results in this chapter are only based on the Kullback-Leibler divergence. This is because the
Kullback-Leibler divergence is the most popular one which also has clear physical meaning in
information theory [131,146]. Interested readers may try other ϕ(·) themselves.

Since the reference distribution Qx in this chapter is limited to be discrete, it is pointless to
consider the continuity of Px. Otherwise, Px and Qx would have discrepant supports so that the
ϕ-divergence is undefined. Thus, we only study the solution to (3.8) when Px is discrete and
neglect the continuous case (3.7).
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Solution to (3.8)

We solve (3.8) using the Kullback-Leibler divergence. Hence, (3.8) can be written as

max
p

N∑
i=1

−pi ln pi

s.t.


∑N

i=1 pi ln
(
pi
qi

)
≤ θ∑N

i=1 pi = 1,

(3.33)

where p := [p1, p2, ..., pj , ..., pN ]⊤ (n.b., M = N). The solution to (3.33) is outlined in the
theorem below.

Theorem 18. The distribution solving (3.33) is given by

pi = exp

{
−λ0 ln(qi) + λ1
−(λ0 + 1)

− 1

}
, ∀i ∈ [N ], (3.34)

where λ0 ∈ R1, λ1 ∈ R1 solve the following the convex and smooth problem:

min
λ0,λ1

λ0θ + λ1 + (λ0 + 1)
N∑
i=1

pi

s.t. λ0 ≥ 0.

(3.35)

Proof. See Appendix C.5.

Since (3.35) is convex and smooth, it can be solved using any first-order method (e.g., projected
gradient descent). Let the objective of (3.35) be fKL−D(λ0, λ1); the subscripts "KL" is for
"Kullback-Leibler" and "D" for "Discrete". The gradients of fKL−D(λ0, λ1) with respect to λ0
and λ1 are, respectively,

∂fKL−D(λ0, λ1)

∂λ0
= θ +

N∑
i=1

[
1 +

ln(qi) + λ1
λ0 + 1

]
pi, (3.36)

and
∂fKL−D(λ0, λ1)

∂λ1
= 1−

N∑
i=1

pi. (3.37)

Likewise, when the optimality reaches, the Kullback-Leibler divergence between p and q conin-
cides with the prescribed budget θ, and the sum of p is unit. The projection step is straightforward
in the gradient descent procedure: whenever λ0 < 0, let λ0 = 0.



Chapter 3. State Estimation for Nonlinear Systems 84

3.2.4 Comparisons for the Three Statistical Similarity Measures

As we can see, the moments-based similarity and Wasserstein distance do not require that the
two distributions to have the same support. Therefore, a discrete distribution and a continuous
distribution can be discussed in a same maximum entropy problem, so can be two discrete
distributions with different supports. In addition, the advantage of the Wasserstein distance and
the ϕ-divergence is that they can implicitly take into account high-order moments of random
variables even for multivariate problems. However, using the Wasserstein distance and the
ϕ-divergence implies that computationally intensive numerical problems have to be solved (cf.
Theorem 15, Theorem 17, and Theorem 18). Instead, using the moments-based similarity gives
the Gaussian approximation state estimation framework which means that closed-form solutions
exist (i.e., canonical Kalman iterations).

3.2.5 Projected Gradient Descent Algorithm for Maximum Entropy Problems

Since all maximum entropy problems subject to the Wasserstein distance and the ϕ-divergence
can be solved by the projected gradient descent algorithm, we depict it in Algorithm 3.1. Without
loss of generality, we use the problem under the Kullback-Leibler divergence [i.e. (3.33)] as an
example; see Theorem 18.

3.3 Distributionally Robust State Estimation

This section outlines the overall distributionally robust particle-based state estimation method.

3.3.1 Generate Worst-Case Prior State Particles

We use the solutions to (3.3) and (3.4) to generate worst-case prior state particles. Solutions under
the moments-based similarity measure are just used to argue for the distributional robustness of
the Gaussian approximation framework; see Corollary 4. Therefore, we do not cover them in
this subsection. Suppose the worst-case prior state particles are {xj}j=1,2,...,M .

First, we suppose {xj}j=1,2,...,M are preset and only their weights are expected to be updated.
For example, we can let M := N and {xj}j=1,2,...,M be a copy of {xi}i=1,2,...,N . For another
example, {xj}j=1,2,...,M can be uniformly sampled from a subset of Rn and this subset is usually
the smallest hyperrectangle or hyperellipsoid containing {xi}i=1,2,...,N . We have the following
method for worst-case prior state particles generation.

Method 1. Given worst-case prior state particles {xj}j=1,2,...,M and nominal prior state particles
{xi}i=1,2,...,N ,

1. If the two sets {xj} and {xi} are identical, the worst-case weights uxj of particles xj can
be determined by Theorem 17 or Theorem 18.
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Algorithm 3.1: Projected Gradient Descent Method for Maximum Entropy Problem Under

the Kullback-Leibler Divergence

Definition: S as maximum allowed iteration steps and s the current iteration step; α as

step size; ϵ as numerical precision threshold; abs(·) returns absolute value.

Remark: Since (3.35) is convex, in principle, any initial values for λ0 ≥ 0 and λ1 are

acceptable. If early stopping is applied (i.e., S is not sufficiently large for time-saving

purpose), a normalization procedure is necessary to guarantee 1 =
∑

i pi.

Input :S, α, ϵ, λ0, λ1
1 s← 0

2 while true do

3 // Gradient Descent

4 λ0 ← λ0 − α · ∂fKL−D

∂λ0
// See (3.36)

5 λ1 ← λ1 − α · ∂fKL−D

∂λ1
// See (3.37)

6 // Projection

7 if λ0 < 0 then

8 λ0 ← 0

9 end

10 // Next Iteration

11 s← s+ 1;

12 if s > S or abs(
∂fKL−D

∂λ1
) < ϵ then

13 // Early Stopping Applied

14 if 1 ̸=
∑

i pi then

15 pi ← pi/
∑

i pi // Normalization

16 end

17 Exit Algorithm

18 end

19 end

Output : pi in (3.34)

2. If the two sets are different, the worst-case weights uxj of particles xj can be determined
by Theorem 17.

3. No matter whether the two sets are identical or not, the worst-case weights uxj of particles
xj can also be determined by Theorem 15 by letting uxj ∝ p(xj), where p(x) is defined in
(3.17). In this case, a normalization procedure is necessary; uxj ← uxj/

∑
j uxj . □
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Second, we suppose {xj}j=1,2,...,M are not preset. Hence, we can directly sample M particles
from p(x) in (3.17). Since p(x) is defined in a partitioned region/space, the first step is to
choose a sub-region, and the second step is to draw a worst-case prior state particle from this
sub-region. We have the following method.

Method 2. First, draw an integer j ∈ [N ] according to the discrete reference distribution Qx

(i.e., choose a sub-region Cj whose probability being chosen is qj). Second, draw a sample xj from
Cj using p(x) defined in (3.17). Repeat the two steps above M times to obtain M worst-case
prior state particles. In this case, all particles xj have the same weight uxj = 1/M . □

At last, we highlight that the proposed approaches for worst-case prior state particle generation
based on entropy-maximization can counteract particle degeneracy. In fact, maximizing the
entropy of a variable distribution implies minimizing the Kullback-Leibler divergence of this
distribution from a uniform distribution. This can be seen from

−
M∑
j=1

pj ln pj = lnM −
M∑
j=1

pj ln
pj

1/M
. (3.38)

Therefore, the worst-case prior state particles have more balanced weights than the corresponding
nominal prior state particles (n.b., uniformly distributed weights are most balanced). On the
other hand,

−
M∑
j=1

pj ln pj ≥
M∑
j=1

pj(1− pj) = 1−
M∑
j=1

p2j . (3.39)

It means that any methods reducing the variance of weights (i.e., improving the effective sample
size) implicitly elevate the entropy of weights of prior state particles; cf. [45, (51)] or [50, (5)].

3.3.2 Evaluate Worst-Case Likelihoods

When the nominal measurement noise is additive, i.e., y = h(x) + v, the nominal likelihood
distribution is py|x(y|x) = pv[y − h(x)]. As a result, the worst-case likelihood distribution can
be chosen near py|x(y|x) = pv[y − h(x)], and worst-case likelihood of a prior state particle
(or a worst-case prior state particle; depending on whether the process dynamics is uncertain
or not) given y can be evaluated accordingly. Likewise, when the nominal measurement noise
is multiplicative, the nominal likelihood distribution is py|x(y|x) = pv[h

−1(x) · y] if h(x) is
invertible. To be specific, we take a Gaussian case as an example to explain the worst-case
likelihood evaluation method under additive and multiplicative measurement noises.

Method 3. If the nominal likelihood distribution of x given y is pv[y−h(x);µ,Σ] or pv[h−1(x)·
y;µ,Σ], and pv(·;µ,Σ) is a multivariate Gaussian density function with mean µ and covariance
Σ, then the worst-case likelihood distribution of x given y is pv(·; µ, θΣ) where θ ≥ 1. □

By multiplying Σ by a scalar θ ≥ 1, a worst-case maximum-entropy likelihood distribution
can be obtained because the entropy of the m-dimensional Gaussian distribution pv(·;µ,Σ) is
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m
2 + m

2 ln(2π)+ 1
2 ln(|Σ|). Hence, improving the covariance implies raising the entropy. Method 3

can be straightforwardly extended to other noise distributions such as the Student’s t distribution.
We do not cover details here.

However, when the nominal measurement noise is non-additive and non-multiplicative, such
closed-form evaluation methods are unavailable. Therefore, numerical methods are indispensable.
The first step is to generate nominal likelihood particles {yr|xj}r=1,2,...,R for each worst-case
prior state particle xj (n.b., when the process dynamics is exact, worst-case {xj}j∈[M ] and
nominal {xi}i∈[N ] are the same). This can be done by the nominal measurement dynamics
y = h(xj ,v). Specifically, we need to generate R samples from Pv, say vr, and obtain
{yr|xj}r∈[R] by yr|xj := h(xj ,vr), ∀r ∈ [R]. Since v is high-dimensional, we use the importance
sampling method [17, Section 11.1.4]: 1) uniformly draw R samples in the support of v, and
2) use pv(v) to determine their weights; uvr ∝ pv(v

r) (n.b., a normalization procedure is
hence necessary). Based on nominal likelihood particles {yr|xj}r=1,2,...,R whose weights are
uyr|xj = uvr , the worst-case likelihood of xj is ready to be evaluated. Suppose the support set of
the worst-case likelihood distribution is {yt|xj}t=1,2,...,T . As the case that generates worst-case
prior state particles in Subsection 3.3.1, {yt|xj}t=1,2,...,T can be just a copy of {yr|xj}r=1,2,...,R

(thus T := R) or uniformly sampled from a subset of Rm. The subset can be the smallest
hyperrectangle or hyperellipsoid containing {yr|xj}r=1,2,...,R.

We have two methods to evaluate the worst-case likelihood of xj given the measurement y.

Method 4. Suppose p∗
y|xj (y) solves (3.5) using the Wasserstein distance. The worst-case

likelihood of xj given the measurement y is p∗
y|xj (y). □

Method 5. Augment y into the support sets of worst-case likelihood distributions for xj , j ∈
[M ]; i.e., let {yt|xj}t=1,2,...,T+1 := {y}

⋃
{yt|xj}t=1,2,...,T . Suppose p∗

y|xj (y) solves (3.6) using
the Wasserstein distance (n.b., the Kullback-Leibler Divergence is not applicable because after
augmentation, the two support sets are hardly identical). The worst-case likelihood of xj given
the measurement y is p∗

y|xj (y). □

Compared to Method 4 and Method 5, Method 3 is likely to be of more interest in engineering for
two reasons: 1) many measurement dynamics are driven by additive measurement noises, and 2)
the involved likelihood distribution has a closed-form expression which allows fast computation.

Remark 5. In practice, when there do not exist model uncertainties in measurement dynamics,
we may have a heuristic method to evaluate the likelihoods of prior particles

p(y|xj) :=

exp

(
−α

R∑
r=1

uyr|xj · ∥y − yrj∥

)
M∑
j=1

exp

(
−α

R∑
r=1

uyr|xj · ∥y − yrj∥

) ,

where α > 0 is a scaling coefficient and yrj is a notational shorthand for the likelihood particle
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yr|xj. Since there are no model uncertainties in measurement dynamics, nominal likelihood

particles are directly used. Another strategy can be p(y|xj) :=
exp

(
−α∥y−

∑R
r=1 uyr |xj ·y

r
j ∥

)
∑M

j=1 exp
(
−α∥y−

∑R
r=1 uyr |xj ·y

r
j ∥

) . □

3.3.3 Outlier Treatment

In this subsection, we provide an outlier identification and treatment method for particle filtering
framework. The outlier identification method is given below.

Method 6. If ∀j ∈ [M ], p∗
y|xj (y) < ε where ε is a threshold, say 5%, then y is an outlier because

there exists no any prior state particle that possibly generates this measurement. Alternatively,
supposing the weighted mean of particles xj is x̄ :=

∑M
j=1 uxj · xj, if p∗y|x̄(y) < ε, then y is an

outlier. □

The outlier treatment method is given below.

Method 7. The identified outlier can be directly trashed and all prior state particles directly
become posterior, during which associated weights keep unchanged. This idea is motivated by
re-descending influence functions in M-estimation, e.g., Hampel’s influence function [55, Eq.
(4.90)]. The outlier can also be replaced by the nearest likelihood particle generated by the
prior state particle that has the largest likelihood or replaced by the nearest likelihood particle
generated by the weighted mean. This philosophy is motivated by monotonic influence functions
in M-estimation, e.g., Huber’s influence function [55, Eq. (4.53)]. □

3.3.4 Overall Method

The distributionally robust particle filtering framework is summarized in Algorithm 3.2. Algo-
rithm 3.2 is a robustified version of the popular canonical particle filter in [45, Algorithm 3]. The
used proposal density (i.e., importance density) for importance sampling is the prior distribution
as in [45, Eq. (63)].

Remark 6 (Symbols in Algorithm 3.2). k as discrete time index; N as number of nominal prior
state particles; M as number of worst-case prior (and also posterior) state particles; R as number
of nominal likelihood particles for every (worst-case) prior state particle, and T as number of
worst-case likelihood particles for the same (worst-case) prior state particle; xi

0 as posterior state
particles at k = 0 and uxi

0
the associated weights, ∀i ∈ [N ]; p∗(yk|xj

k) as worst-case likelihood of
xj
k given yk; N̂eff as effective sample size and Nthres its threshold. □

Remark 7. If measurement noises are additive or multiplicative, ignore Step 3, and use Method
3 in Step 4. If there are no process model uncertainties, ignore Step 2. If resampling is applied
at every time k, M and N can be different; cf. Line 28. Otherwise, M and N must be identical
to guarantee the number of posterior state particles at time k − 1 is the same as the number of
prior state particles at time k; cf. Step 1. □
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Algorithm 3.2: Distributionally Robust Particle Filtering for Nonlinear Systems

Remarks: See Remark 6 and Remark 7. For every k, execute the following 5 steps.

Initialization: N , M , R, T , Nthres, and {xi
0, uxi

0
}i∈[N ].

Input :yk, k = 1, 2, 3, ...

1 // Step 1: Generate Nominal Prior State Particles

2 for i = 1 : N do

3 Sample wi
k−1 from the distribution of wk−1

4 xi
k = fk(x

i
k−1,w

i
k−1)

5 end

6 // Step 2: Obtain Worst-Case Prior State Particles

7 Use Method 1 or Method 2 to generate worst-case prior state particles {xj
k}j∈[M ] and

obtain their weights {u
xj
k
}j∈[M ]

8 // Step 3: Evaluate Worst-Case Likelihood for Every xj
k

9 for j = 1 :M do

10 //Generate Nominal Likelihood Particles yrk,∀r ∈ [R]

11 for r = 1 : R do

12 Sample vrk from the distribution of vk

13 yrk = hk(x
j
k,v

r
k)

14 end

15 //Evaluate Worst-Case Likelihood of xj
k at yk

16 Use Method 4 or Method 5 for likelihood evaluation

17 //Outlier Identification and Treatment

18 Use Method 6 for outlier identification and Method 7 for outlier treatment

19 end

20 // Step 4: Generate Posterior State Particles xj
k

21 for j = 1 :M do

22 Keep xj
k unchanged; Update weights by u

xj
k
← u

xj
k
· p∗(yk|xj

k)

23 end

24 Normalize weights u
xj
k
, ∀j ∈ [M ]

25 // Step 5: Resampling

26 N̂eff ← 1/
∑M

j=1 u
2
xj
k

27 if N̂eff < Nthres then

28 Resample N times from {xj
k, uxj

k
}j∈[M ]

29 end

Output :Worst-case posterior state particles {xi
k} and weights {uxi

k
}, ∀i ∈ [N ].
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3.3.5 Computational Complexity

As we can see, the proposed generic robustified particle filter is computationally intensive: if S in
Algorithm 3.1 and N , M , R, and T in Algorithm 3.2 are large, the calculation burden is heavy
as well. The worst-case complexity order of Algorithm 3.1 is O(S). However, the complexity
order of Algorithm 3.2 is hard to be specified because it depends on which sampling method (e.g.,
the importance sampling and the fundamental theorem of simulation) is used, which resampling
method (e.g., systematic and multinomial) is used, and which maximum-entropy method (among
Methods 1-5) is used. The burden, however, is unavoidable to robustify particle-based filters
and to evaluate likelihoods under non-additive and non-multiplicative measurement noises. If
the process dynamics is exact and measurement noise densities fortunately have closed-form
expressions (see, e.g., Method 3), then the computation burden can be limited and the resulted
robust particle filter has the same computational complexity as the canonical particle filter
(because no extra computation burden is introduced in Step 2 and Step 3).

3.3.6 Sizes of Ambiguity Sets

The sizes of ambiguity sets (i.e., θ’s in Theorems 15-18) need to be specified in implementing
the robustified particle filter. However, this cannot be theoretically conducted because for a real
state estimation problem, the true states are unknown. In other words, the training dataset is
unavailable so that the sizes of ambiguity sets cannot be tuned to be (nearly) optimal. Therefore,
signal processing practitioners are expected to try appropriate values for their specific problems.
The general principle is that the sizes can be neither too large nor too small: an extremely large
value renders the robust filter being too conservative, while the robust filter with an extremely
small value cannot provide sufficient robustness. Since this tuning principle remains the same
for linear systems [57,58], we do not repeat experimental details in this section; details can be
seen in Subsection 2.2.6 (Suggestions on Tuning the Size of the Ambiguity Set) and Subsection
2.3.5 (Sensitivity Analysis).

3.4 Experiments

All the source data and codes are available online at GitHub: https://github.com/Spratm-

Asleaf/DRSE-Nonlinear.

3.4.1 Find Maximum Entropy Distributions

Continuous Maximum Entropy Distribution Using Wasserstein Distance

We consider a two-dimensional continuous rectangular region [0, 1] × [0, 1]. Let x be a 2-
dimensional prior state particle: x1 denote the horizontal axis and x2 the vertical axis. Suppose
the reference discrete prior state distribution q is supported on six points, which are randomly
sampled from the rectangle. Their weights are also randomly determined. The points and their
weights are displayed in Table 3.1.

https://github.com/Spratm-Asleaf/DRSE-Nonlinear
https://github.com/Spratm-Asleaf/DRSE-Nonlinear
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Table 3.1: The reference distribution

x1 x2 x3 x4 x5 x6

Points 0.5007 0.2397 0.7338 0.7065 0.3739 0.4450

0.8763 0.1513 0.0323 0.6066 0.1581 0.4139

Weights 0.0583 0.2695 0.0340 0.3496 0.1453 0.1433

We use Theorem 15 and its corresponding projected gradient descent method to find the
continuous maximum entropy distribution. The uncertainty budget θ is set to θ := 0.025 (only
for a possible demonstration; other values also applicable). In the projected gradient descent
procedure, the step size α := 0.05 and the maximum allowed iteration steps S := 500. The
results are shown in Fig. 3.2. The Monte Carlo integration method is used to evaluate integrals
in (3.18), (3.19), and (3.20); for every Monte Carlo sample x, it belongs to Ci if

∥x− xi∥ − λi ≤ ∥x− xj∥ − λj , ∀j ̸= i.

(a) Optimal Partition. (b) Maximum Entropy Distribution.

Figure 3.2: Optimal partition and maximum entropy distribution. The whole rectangular
region is partitioned into six sub-regions. Red-filled circles in (a) indicate the supports of the
reference distribution q. Peaks in (b) correspond to the supporting points of q.

Discrete Maximum Entropy Distribution Using Kullback-Leibler Divergence

The reference distribution q and the induced maximum entropy distribution p are displayed in
Table 3.2 and Fig. 3.3. p is calculated by Theorem 18. Since they have the same support set,
we do not explicitly demonstrate what the particles xi are. The uncertainty budget θ is set to
θ := 0.0075 (only for a possible demonstration; other values also applicable). In the projected
gradient descent procedure, the step size α := 0.05 and the maximum allowed iteration steps
S := 500. From Table 3.2 and Fig. 3.3, we can see that p are more balanced than q: the
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minimum of p is larger than that of q (when i = 4), while the maximum of p is smaller than
that of q (when i = 2).

Table 3.2: The reference distribution and its induced maximum entropy distribution (Using
Kullback-Leibler Divergence)

x1 x2 x3 x4 x5 x6

q 0.1993 0.2907 0.0974 0.0492 0.1505 0.2128

p 0.1934 0.2492 0.1196 0.0756 0.1602 0.2021

1 2 3 4 5 6
0

0.05
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0.15

0.2

0.25

0.3

Figure 3.3: The maximum entropy distribution p (left bar at each i) induced by the reference
distribution q (right bar at each i) using the Kullback-Leibler Divergence.

Discrete Maximum Entropy Distribution Using Wasserstein Distance

We let the reference discrete distribution q explicitly be a likelihood distribution of one (worst-
case) prior state particle x. Suppose q and its induced maximum entropy distribution p have
different support sets, as displayed in Fig. 3.4. The support set {yr|x}r∈[R] of q consists of
particles propagated from a 2-dimensional nonlinear measurement dynamics

yr1 = | sin (x1 + x2 + vr1)|,

yr2 = | cos (ex1×x2+vr2 )|, ∀r ∈ [4]

where x := [x1, x2]
⊤ := [0, 0]⊤ is the fixed prior state particle, and measurement noises vr1 and vr2

are sampled from a uniform distribution U [0, 1]. The support set of p, however, is constructed
by five uniformly sampled points (i.e., green-filled squares No. 1 ∼ 5) and a new measurement
(i.e., green-filled square No. 6). Randomly setting the reference distribution

q := [0.3700, 0.3194, 0.0610, 0.2496]⊤,
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then the induced maximum entropy distribution p is given as

p = [0.2641, 0.1272, 0.3440, 0.2513, 0.0071, 0.0064]⊤,

where p is obtained by Theorem 17. The uncertainty budget θ is set to θ := 0.325 (only
for a possible demonstration; other values also applicable). In the projected gradient descent
procedure, the step size α := 0.05 and the maximum allowed iteration steps S := 500. As
expected, although the support sets are different, we can still calculate the weights of new
supporting points of p, and the worst-case likelihood of the new measurement is evaluated as
0.0064. This small-valued likelihood result coincides with our intuition because the new point
No. 6 is far away from the supports (i.e., red-filled circles) of q.
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Figure 3.4: The maximum entropy distribution p induced by the reference distribution q
using the Wasserstein distance. Red-filled circles are supports of q, while green-filed squares are
supports of p.

Alternatively, we may suppose the support set of p is constructed by the union of the support
set of q and the new measurement. The supporting points of q are uniformly sampled from
[0, 1] × [0, 1]. We have the results in Table 3.3, in which y5 is a new measurement uniformly
sampled from [0, 1]× [0, 1] as well. The uncertainty budget θ is set to θ := 0.01 (only for a possible
demonstration; other values also applicable). In the projected gradient descent procedure, the
step size α := 0.05 and the maximum allowed iteration steps S := 500. From Table 3.3, it
can be seen that the likelihood (of the associated worst-case prior state particle) at this new
measurement is 0.0260.

3.4.2 A Target Tracking Example

In this section, we consider a target tracking problem under uncertain conditions; see Fig. 3.5.
The target moves along the curved-orange-dotted trajectory and its true (but unknown) speed
is v = 2m/s. The sensor is able to obtain real-time distance ρ and relative orientation φ from
the target to itself; it moves along the vertical axis from the origin and its speed is v0 = 1m/s.
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Table 3.3: The reference distribution and its induced maximum entropy distribution (Using
Wasserstein Distance)

y1 y2 y3 y4 y5

Points 0.4314 0.6146 0.0059 0.5459 0.6206

0.5779 0.2699 0.8958 0.1993 0.3924

Weights (q) 0.3438 0.1316 0.3191 0.2055 ⧸

Weights (p) 0.3372 0.1327 0.3191 0.1850 0.0260

(5,5)

(0,0)

1m/s
2m/s

Sensor

Target
Target Trajectory

ρ 

φ

Figure 3.5: A target tracking diagram. The initial position of the target is (5, 5) and of the
sensor is (0, 0).

Therefore, the nominal process model (i.e., target maneuver model) is xk = Fxk−1 +Gwk−1

and

xk :=



x1,k

s1,k

x2,k

s2,k


,F :=



1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1


,G :=



∆t 0

1 0

0 ∆t

0 1


,

where ∆t := 0.5s is the sampling time; x1 and s1 (resp. x2 and s2) denote the real-time
position and speed of the target in the horizontal (resp. vertical) axis, respectively; white-
Gaussian-distributed wk−1 is the speed noise vector whose mean is zero and covariance is
Qk := diag{0.5, 0.5}. On the other hand, the nominal measurement model is yk := [ρk, φk]

⊤ and

ρk =
√

(x1,k − x01,k)
2 + (x2,k − x02,k)

2 + v1,
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φk = arctan

(
x2,k − x02,k
x1,k − x01,k

)
+ v2,

where x01,k and x02,k denote the real-time position of the sensor in the horizontal axis and the
vertical axis, respectively; v1 is the ranging error and v2 is the heading error. Both v1 and v2 are

white Gaussian with zero mean. The measurement noise covariance is Rk :=

 0.1 0

0 0.0001

.

(Namely, the error range of v1 is ±3
√
0.1 = ±0.95m and of v2 is ±3

√
0.0001 = ±0.03rad =

±1.7deg.) The unit of all position variables is meter, the unit of all speed variables is meter per
second, and the unit of all angle variables is radian.

However, in practice, there exist positioning errors for the moving sensor; the nominal values
of x01,k and x02,k (might from GPS etc.) are uncertain. Specifically, the true governing (but
unknown) measurement model might be

ρk =
√

(x1,k − x01,k − η1,k)2 + (x2,k − x02,k − η2,k)2 + v1,

φk = arctan

(
x2,k − x02,k − η2,k
x1,k − x01,k − η1,k

)
+ v2,

where η1,k and η2,k are positioning errors. In this experiment, they are assumed to be Gaussian
having the same mean of zero and the same variance of 0.3; i.e., the error range is ±3

√
0.3 =

±1.6m.

We conduct ten episodes of Monte Carlo simulation and each episode runs 100 discrete time
steps. For each episode, the target tracking accuracy is measured by rooted mean square error
(RMSE) along 100 time steps, i.e.,√√√√ 1

100

100∑
k=1

(x1,k − x̂1,k)2 + (x2,k − x̂2,k)2

where x̂ denotes the estimate of x. The overall target tracking accuracy is measured by
the averaged RMSEs of ten episodes. We implement the canonical particle filter (PF) in [45,
Algorithm 3], the Gaussian approximation method (GA) in Theorem 13 [specifically, the Ensemble
Kalman filter (EnKF)], and the robust particle filter (RPF) in Algorithm 3.2 for comparison. In
this example, since the measurement noises v1 and v2 are additive and Gaussian, Method 3 with
θ := 5 is used to evaluate worst-case likelihoods for the proposed robust particle filter. (θ can be
set to other possible values; we just set θ := 5 as an example.) For all methods, we assume that
the initial state particles are sampled from a 4-dimensional Gaussian distribution with mean
of [5, 0, 5, 0]⊤ and covariance of diag{0.2, 0.2, 0.2, 0.2}. In Algorithm 3.1, S := 500, α := 0.05,
ϵ := 1× 10−4, λ0 := 2, and λ1 := 0. In Algorithm 3.2, N = M := 1000. (We do not initialize
R and T because for this closed-form likelihood evaluation case, they are not used.) For the
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demonstration purpose and without loss of generality, all the involved parameter values in this
experiment are arbitrarily set, one may also try other values for comparison.

The results with and without model uncertainties (i.e., η1 and η2) are shown in Table 3.4. In
Table 3.4, "Time" denotes average execution time at each time step (unit: seconds).

Table 3.4: The target tracking results with and without uncertainties

PF GA (EnKF) RPF

RMSE Time RMSE Time RMSE Time

With 1.49 0.013 1.32 0.0023 1.25 0.0097

Without 1.01 0.011 1.13 0.0021 1.05 0.0090

As we can see, when there exist model uncertainties, GA and RPF have smaller averaged RMSEs
because they are distributionally robust. Besides, RPF outperforms GA since GA assumes
Gaussianity of prior state distributions and likelihood distributions. On the other hand, when
there are no model uncertainties (i.e., the nominal model exactly coincides with the true model),
the canonical PF works best because it is optimal for the nominal model. However, the benefit
of using GA is that it is always computationally easy.

3.5 Chapter Conclusions

This chapter studies the distributionally robust state estimation scheme for nonlinear systems
subject to model uncertainties. Attention has been paid to the particle filtering framework due
to its flexibility. The maximum entropy prior state distributions and the maximum entropy
likelihood distributions are leveraged to robustify the particle filter. The existing Gaussian
approximation framework is proven to be distributionally robust. In addition, a generic likelihood
evaluation method is presented under non-additive and non-multiplicative measurement noises.
However, extra computation burden is required to obtain worst-case prior state particles even
when worst-case likelihoods can be analytically evaluated. Another issue is to properly choose the
radii of ambiguity sets, i.e., θ’s in Theorems 15-18. Nevertheless, these radii cannot be trained
to be (nearly) optimal because for real state estimation problems, true states (i.e., training
dataset) are unknown. Therefore, in practice, practitioners have to try appropriate values for
their specific problems.



Chapter 4
Conclusions

This thesis studies distributionally robust state estimation frameworks for both linear systems
and nonlinear systems. In a big view, the modeling uncertainties are quantified by families of
distributions, and the worst-case distributions are leveraged to find robust state estimators that
are insensitive to model uncertainties. The families of distributions are constructed as balls
centered at nominal distributions with radii defined by statistical similarity measures such as
Wasserstein distance, Kullback-Leibler divergence, and moment-based similarity. Comprehensive
comparisons with existing robust state estimation solutions are made through showing the
advantages and disadvantages of existing methods.

For the linear case, the following key points can be summarized.

1) The proposed framework can account for both parameter uncertainties and measurement
outliers. It offers a new perspective to understand the robust state estimation problem under
parameter uncertainties and measurement outliers, and generalizes several classic methods
into a unified framework.

2) The framework uses only a few scalars (i.e., the radius/scale of the ambiguity set) rather than
structured matrices with many entries to describe the modeling uncertainties. Therefore, it
does not require a priori structural information of modeling uncertainties.

3) The distributionally robust estimation framework outperforms other existing structural-
information-aware frameworks when we do not have a priori structural information of
modeling uncertainties. However, when we know some structural information of modeling
uncertainties, the newly proposed distributionally robust estimation framework performs
worse than the existing specifically designed structural-information-aware frameworks.

4) The risk-sensitive Kalman-like filter and the fading-memory Kalman-like filter are distri-
butionally robust state estimation solutions under Kullback–Leibler divergence (in general,
τ -divergence) ambiguity and moment-based ambiguity, respectively. However, it is not always
beneficial to adaptively adjust the risk-sensitive parameter of a risk-sensitive Kalman-like
filter and the fading factor of a fading-memory Kalman-like filter.

For the nonlinear case, attention has been paid to the particle filtering framework to counteract
model uncertainties due to its flexibility. The key points are as follows.
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1) The maximum entropy prior state distributions and the maximum entropy likelihood distri-
butions are leveraged to robustify the particle filter.

2) The proposed maximum-entropy strategies can also provide weight-balancing mechanism
to reduce particle degeneracy and new-sample-generating mechanism to diminish particle
impoverishment.

3) The existing Gaussian approximation framework is shown to be distributionally robust.

4) A generic likelihood evaluation method is presented under non-additive and non-multiplicative
measurement noises.

For both the linear case and the nonlinear case, three remarks below have to be outlined.

1) Robust filters are just remedial solutions. Reducing modeling uncertainties is always important.
Readers should not expect that the proposed methods are optimal or satisfactory in all
scenarios, e.g., for a model with t-distributed measurement noises (which implies that the
true model is known to be with t-distributed measurement noises).

2) It is better to take into consideration model uncertainties from immediate sources where
uncertainties occur because higher-level treatments tend to be more conservative (i.e., loss of
flexibility). For example, see Section 2.2.5: if parameter uncertainties can be directly mod-
eled/quantified, the corresponding specific-purpose robust solutions are likely to outperform
the proposed general-purpose distributionally robust solution.

3) The robustness under uncertain conditions comes with the cost of sacrificing the optimality
under perfect conditions.

However, the proposed algorithms are not robust with respect to the sizes of the ambiguity
sets, i.e., θ2 in Algorithm 2.1, θ’s in Algorithm 2.2, and θ’s in Theorems 15-18. Unfortunately,
the optimal or convincing tuning methods for the sizes of ambiguity sets have yet to be found.
Nevertheless, these radii cannot be trained to be (nearly) optimal because for real state estimation
problems, true states (i.e., training dataset) are unknown. Therefore, in practice, practitioners
have to try appropriate values for their specific problems. We invite scholars in this field to
collaborate with the author on addressing the two issues below in the future.

1) How can these radii/sizes be tuned in a real system where the true state is unknown?

2) How can we ensure that the state estimator remains tuned over varying conditions? In other
words, how do we select time-varying radii/sizes?

Although imperfect, the proposed method is still promising because, for example, tuning a scalar
parameter, e.g., θ2 in Algorithm 2.1 is easier than tuning structural matrices Γk−1 in (2.31),
Mk−1, Ef,k−1, and Eg,k−1 in (2.33), and Fi,k−1 and Gi,k−1 in (2.34).
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Appendix A
Preliminaries

A.1 Distributionally Robust Optimization

Distributionally robust optimization, originating from statistical game theory (cf. mixed strategy)
[102] and robust statistics [126], is currently popular in academic communities, such as the
fields of operations research [147], machine learning [148], and systems control [65]. Suppose the
domain of the decision vector x is X and the parameter vector of an optimization problem is ξ
with its support Ξ. In many application scenarios, when ξ is random, we do not know the real
distribution Pξ of ξ. However, we can assume that Pξ lies in a family of distributions F with
some properties. Therefore, we have a robust optimization problem over F that considers the
parameters’ uncertainties as

inf
x∈X

sup
Pξ∈F

E[f(x, ξ)], (A.1)

where the expectation is taken over Pξ and f(·, ·) is the objective function. Here, F is termed as
an ambiguity set. Thus, the ambiguity set F forms a distributional uncertainty space for the
modeling uncertainties of the objective function f(·, ·). Typically, F can be constructed using
the moments of ξ [120] or a metric/divergence of distributions such as the Kullback–Leibler
(KL) divergence [125]

Fξ(θ) =
{
Pξ ∈ P(Ξ)

∣∣∣∣ KL(Pξ∥P̄ξ) ≤ θ
}
, (A.2)

or the Wasserstein metric [56]

Fξ(θ) =
{
Pξ ∈ P(Ξ)

∣∣∣∣ W(Pξ, P̄ξ) ≤ θ
}
, (A.3)

or others including the τ -divergence [90], ϕ-divergence [125], α/β/γ-divergence [149], etc., where
KL(·∥·) defines the KL divergence, W(·, ·) defines the Wasserstein metric, and we suppose that
the nominal distribution of ξ is P̄ξ. Intuitively, Fξ(θ) means that although we do not know the
real underlying distribution Pξ, we believe that Pξ lies in a ball centered at P̄ξ with the radius
of θ.

Suppose that x∗ and P∗
ξ solve the distributionally robust optimization problem (A.1). We term

x∗ the worst-case robust solution and P∗
ξ the least-favorable (i.e., worst-case) distribution.

110
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A.2 Optimal Estimation

The linear system model (2.1) induces two stochastic vector processes {xk} and {yk}, where
k = 0, 1, 2, · · · . For every k, xk and yk have finite second moments. Note that y0 := 0 (i.e., a
degeneration distribution). Let H′

Yk
denote a collection of functions (i.e., estimators) defined by

H′
Yk

:=


ϕ(y1, ...,yk)

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ : Rm × · · · × Rm︸ ︷︷ ︸
k

→ Rn

ϕ is Borel-measurable∫
(Rm)k

[ϕ(Yk)]
⊤[ϕ(Yk)]dPYk

(Yk) <∞


. (A.4)

Meanwhile, let HYk
denote a set of linear functions of 1 and Yk (i.e., linear estimators):

HYk
:=

{
Bk1+

∑k
i=1Aiyi

∣∣∣∣∣Bk,A1, . . . ,Ak ∈ Rn×m

}
,

=

{
bk +

∑k
i=1Aiyi

∣∣∣∣∣bk ∈ Rn,A1, . . . ,Ak ∈ Rn×m

}
.

(A.5)

It is known that the optimal estimate of xk given Yk in the sense of minimum mean square
error is the unique orthogonal projection of xk onto H′

Yk
[67, 68]. For the special case when

{xk} ∪ {yk} are jointly Gaussian, the optimal estimate of xk given Yk in the sense of minimum
mean square error is the unique orthogonal projection of xk onto HYk

. However, no matter
whether it is Gaussian or not, the unique orthogonal projection of xk onto HYk

gives the optimal
linear estimation [67]. In view of the optimal Bayesian posterior estimation theory [11,25] (cf.
Sherman’s theorem), this projection point is the same as the conditional mean of xk given Yk,
i.e., x̂k = E(xk | Yk), which minimizes the mean square estimation error [28]

x̂k = arginf
ϕ∈H′

Yk

TrE[xk − ϕ(Yk)][xk − ϕ(Yk)]⊤, (A.6)

where the expectation is taken over Pxk,Yk
.

In particular, in the linear case (e.g., jointly Gaussian), this optimal Bayesian estimator (i.e.,
the conditional mean) admits a linear form [28]

x̂k = x̄k +ΣxY,kΣ
−1
Y Y,k

[
Yk − Ȳk

]
, (A.7)

where x̄k and Ȳk are a priori expectations of xk and Yk, respectively,

ΣxY,k := E (xk − x̄k)
(
Yk − Ȳk

)⊤
,

and ΣY Y,k := E
(
Yk − Ȳk

) (
Yk − Ȳk

)⊤. With a slight abuse of notation, we note that in (A.7),
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Yk − Ȳk := col{yi − ȳi}0≤i≤k,

ExkY⊤
k :=

[
Exky

⊤
0 ,Exky

⊤
1 , ...,Exky

⊤
k

]
,

and
EYkY⊤

k :=
[
Eyiy

⊤
j

]
0≤i,j≤k

.

In other words, EYkY⊤
k is a block matrix, and the block-type entry at the ith row and jth column

is defined by Eyiy
⊤
j . As a result, the minimum mean square estimation error is given as

E (xk − x̂k) (xk − x̂k)
⊤ = Σxx,k −ΣxY,kΣ

−1
Y Y,kΣY x,k, (A.8)

where ΣY x,k = Σ⊤
xY,k, Σxx,k := E (xk − x̄k) (xk − x̄k)

⊤, and the expectation is taken over Pxk,Yk
.

Eq. (A.8) implies that the introduction of the information of xk from Yk helps reduce (resp.
improve) the estimation error (resp. performance) of xk. In contrast, if xk is statistically
independent of Yk, we have ΣxY,k ≡ 0, admitting x̂k = x̄k and E (xk − x̂k) (xk − x̂k)

⊤ = Σxx,k;
i.e., there is no improvement in estimation performance after introducing Yk.

However, as a state estimation problem, the measurements yk are available in sequence one
by one, not in block as Yk. Therefore, we need to design a time-incremental version [89] (i.e.,
recursive form [28]) of the optimal estimator (A.7). Namely,

inf
ϕ∈H′

yk

TrEYk−1
Exk,yk|Yk−1

{
[xk − ϕ(yk)] [xk − ϕ(yk)]

⊤
∣∣∣Yk−1

}
, (A.9)

where the inner expectation is taken over the joint distribution of xk and yk conditioned on
the past measurements Yk−1, i.e., Pxk,yk|Yk−1

, and the outer expectation is taken over PYk−1
.

Formally, Pxk,yk|Yk−1
is a random measure (due to the randomness of Yk−1) and is called a

Markov kernel or a probability kernel: for every fixed Yk−1, Pxk,yk|Yk−1
is a probability measure.

Note that H′
yk

is different from H′
Yk

. In fact, the optimization problem (A.9) and the problem

inf
ϕ∈H′

yk

TrExk,yk|Yk−1

{
[xk − ϕ(yk)] [xk − ϕ(yk)]

⊤
∣∣∣Yk−1

}
, (A.10)

have the same solution, i.e., x̂k = E(xk|Yk). The fact that x̂k = E(xk|Yk) is the solution to (A.10)
is obvious: for a given distribution Pxk,yk|Yk−1

, the minimizer of (A.10) is x̂k = E(xk|yk,Yk−1).
Further, we can show that any minimizer of (A.10) also solves (A.9); see [68, Example 11.5].

According to [28], (A.9) is equivalent to (A.6). Therefore, x̂k in (A.7) also reads

x̂k = x̄k +Σxy,kΣ
−1
yy,k [yk − ȳk] , (A.11)

where x̄k and ȳk are conditional a priori expectations of xk and yk given Yk−1, respectively,
which are also random vectors. However, they are non-random in terms of xk and yk (whenever
Yk−1 is specified, x̄k and ȳk become deterministic); Σxy,k := E

{
(xk − x̄k)(yk − ȳk)

⊤∣∣Yk−1

}
;
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Σyy,k := E
{
(yk − ȳk)(yk − ȳk)

⊤∣∣Yk−1

}
. Hence, x̄k = E(xk|Yk−1) = Fk−1x̂k−1 and ȳk =

E(yk|Yk−1) =HkFk−1x̂k−1, leading (A.11) to

x̂k = Fk−1x̂k−1 +Σxy,kΣ
−1
yy,k [yk −HkFk−1x̂k−1] , (A.12)

which has a recursive form from x̂k−1 to x̂k. In addition, the posterior minimum mean square
estimation error conditioned on Yk−1 reads

E
{
(xk − x̂k)(xk − x̂k)

⊤
∣∣∣Yk−1

}
= Σxx,k −Σxy,kΣ

−1
yy,kΣyx,k, (A.13)

where Σyx,k = Σ⊤
xy,k and the prior estimation error conditioned on Yk−1 is

Σxx,k := E
{
(xk − x̄k)(xk − x̄k)

⊤
∣∣∣Yk−1

}
.

If we take the expectation of (A.13) over PYk−1
, we can recover the overall minimum mean square

estimation error in (A.8). Note that the value in (A.13) is random due to the random sequence
Yk−1, while that in (A.8) is deterministic. Since the estimator (A.12) is unbiased, the minimum
mean square estimation error matrix coincides with the minimum estimation error covariance
matrix. The filter (A.12) is obviously the canonical Kalman filter. Explicit expressions of Σxx,k,
Σxy,k, and Σyy,k are straightforward to derive and can also be obtained from the canonical
Kalman filter.

A.3 On Matrix-Type Objective

In the state estimation literature, some people directly work on minimizing a covariance matrix
(see, e.g., [28] and [24, Chapter 3]), while others work on minimizing its trace (see, e.g., [18, 19]).
In fact, minimizing a matrix objective is equivalent to minimizing its trace [28, 150]. Note
that minX∈X X and minX∈X Tr [X] over a convex and compact matrix set X have the same
matrix-valued solution X∗ because the trace operator is monotonically increasing. In this thesis,
we study on minimizing the traces of estimation error covariance matrices.

A.4 Some Statistical Concepts

Suppose the density of interest p(µ; θ) is parameterized by unknown mean θ. For mean estimation
(a.k.a. location estimation [126]) problems, in general, p(µ; θ) = p(µ−θ); recall, e.g., the Gaussian
distribution p(µ; θ) = 1√

2π
exp [−1

2(µ− θ)
2] supposing the variance is unit. Strictly speaking,

the score function is defined with respect to the unknown parameter θ as d
dθ ln p(µ; θ). Since

d
dθ ln p(µ; θ) = −

d
dµ ln p(µ; θ), in statistics, some authors also directly define the score function

with respect to µ as − d
dµ ln p(µ; θ). As a result, the Fisher information has two equivalent

definitions as well: E[− d2

dθ2
ln p(µ; θ)] and E[− d2

dµ2 ln p(µ; θ)].

In statistics, the three concepts, score function, influence function, and weight function, are
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closely related but different. Score function is well-known in maximum likelihood estimation,
influence function in general (outlier-) robust statistics [100], [55, Chap. 3], and weight function
in (outlier-) robust linear regression [71,98, 151], [55, Chap. 7]. Influence function is a property
of an estimator designed for a distribution, while score function is that of the distribution
itself. However, in M-estimation, influence function is just a multiple of score function and the
constant multiplier is the Fisher information associated with the distribution. Let Tθ(Pu) be
the M-estimator of the mean of the distribution Pu whose density is pu(µ). Supposing a score
function is given by ψ(µ) := − d

dµ ln p(µ), the influence function IF (µ) equals to [100]

IF (µ) := lim
ϵ↓0

Tθ[(1− ϵ)Pu + ϵ∆µ]− Tθ[Pu]

ϵ

=
ψ(µ)

−
∫
ψ′(µ)p(µ)dµ

,

where ∆µ is a point mass distribution concentrated at µ, ψ′(·) is the derivative of ψ(·), and the
denominator is the Fisher information. In particular, if the Fisher information of the distribution
is unit (e.g., standard Gaussian), the score function coincides with the influence function. For
this reason, in M-estimation contexts, practitioners first derive score function and then equate
it to influence function because a score function is mathematically easier to obtain. On the
other hand, the weight function in (outlier-) robust linear regression is defined by ψ(µ)/µ. In
statistical theory the three concepts are distinguished because they have different backgrounds,
meanings, and definitions, but in signal processing practice we consider them to be equivalent
(in the sense that one uniquely implies another) because they have similar mathematical forms.
With this implication in mind, it is not confusing that the score function ψ(·) shown in Theorem
8 and Theorem 11 is directly termed as "influence function" in literature such as [21, 35, 97, 101].
This is more intuitively understandable for signal processing practitioners because ψ(·) limits
the "influence" that a (contaminated) measurement yk may bring to the estimator.

In M-estimation contexts, when we mention to design an influence function, we mean to design
the score function ψ(·) [100]. Besides, when we design a weight function in robust linear
regression contexts, we also uniquely obtain the corresponding score function in M-estimation
counterpart [99]. The score function, in turn, implicitly determines the distribution for the
studied population (which includes both ordinary points and outliers); p(µ) ∝ exp [−

∫ µ
−∞ ψ(µ)dµ]

because ψ(µ) = − d
dµ ln p(µ). For additional information, see Appendix A.5.

A.5 Formal Definitions for Terminologies in State Estimation

Bayesians and Frequentists have different philosophies towards statistical parameter estimation.
Suppose a linear measurement system is given as y = θ + v where y ∈ R is the measurement,
θ ∈ R is the unknown parameter to be estimated, and v ∈ R is the noise term which is zero-mean
Gaussian. Frequentist statisticians treat θ as a fixed number although it is unknown, and
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then use collected samples yi, i = 1, 2, · · · , N to estimate θ, during which properties, such as
asymptotic variance, (Fisher) consistency, confidence interval, are also studied. In contrast,
Bayesian statisticians treat θ as a random variable which has a prior distribution, say, p(θ), and
then find the posterior distribution p(θ|y) based on the prior distribution p(θ) and measurement
likelihood p(y|θ) [i.e., p(θ|y) (or its mean, mode, etc.) is the estimate of θ]. Therefore, in principle,
a state estimation problem is more a Bayesian estimation problem than a Frequentist estimation
problem. Likewise, the canonical Kalman filter is a Bayesian method; see its origin [25]. On the
other hand, it is well-known that the maximum a-posteriori (MAP) estimation in Bayesians is
equivalent to a regularized regression, while the maximum likelihood estimation in Frequentists
is equivalent to a (conventional) regression; see [17, Chap. 3]. Since the term "influence function"
was intentionally invented for Frequentist statistical inference problems [128], using influence
functions are natural for robust (conventional) regression problems [55, Chap. 7; cf. Eq. (7.39)],
especially when deriving the associated asymptotic variances [55, Chap. 7.6; cf. Eq. (7.78)]).
In contrast, for Bayesian statistical inference problems, influence functions are applied over
the innovation vectors (cf. Theorem 8 in this thesis), and therefore, the measurement residual
term for robust regularized regression problems (cf. [99]). As we can see, in both Frequentists
and Bayesians, an influence function can be understood as a qualitative robustness measure: it
describes how much "influence" that a wild measurement may bring for an estimator.

Suppose an influence function ψ(µ) := − d
dµ ln p(µ) is used. In Frequentists, the quantitative

robustness (against measurement outliers) can be measured by the minimax asymptotic variance
of a M-estimator [126], [55, pp. 11], i.e.,

min
ϕ(·)

max
p(·)

V :=
1

−
∫
ψ′(µ)p(µ)dµ

=
1

E
[
− d2

dµ2
ln p(µ)

] ,
where ϕ(·) is the optimal robust estimator. In contrast, in Bayesians, the quantitative robustness
(against measurement outliers) can be measured by the minimax posterior estimation error
covariance [see (2.35), (2.38), and (2.43) in this thesis], i.e.,

min
ϕ(·)

max
p(·)

TrP := Tr

{
M −MH⊤S−1HM · E

[
− d2

dµ2
ln p(µ)

]}
.

Note that in the definition of P above, M and S are exact (cf. Theorem 3 of this thesis) because
we are only investigating the influence of measurement outliers. As we can see, both minmaxV

and minmaxP require smallest Fisher information E
[
− d2

dµ2 ln p(µ)
]
. This implies another side

contribution of this thesis, i.e., the design/definition of robustness measure (against measurement
outliers) for Kalman-type filters. Note also that in Frequentists, the quantitative robustness
measure is not limited to the asymptotic variance. It may also include other candidates such as
breakdown point, gross-error-sensitivity, rejection point [100].

As above, we mentioned a term "Kalman-type". In state estimation community, two terms
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"Kalman-type" and "Kalman-like" are widely used. However, the exact definition of "Kalman-
type" has not been rigorously given in literature. We complement it in Definition 2.

Definition 2. A state estimator is called "Kalman-type" or "Kalman-like", if the following
three conditions are satisfied.

1. It is a Bayesian statistical inference method.

2. It is a closed-form solution at each time step (i.e., no numerical iterations are required).

3. It operates recursively along the time axis. □

Although state estimation problems are Bayeisan statistical inference problems and Kalman-
type filters are Bayesian methods (recall Definition 2), it does not imply that optimal state
estimate for linear systems cannot be obtained by Frequentist methods. For example, [71,98]
amazingly reformulate a state estimation problem into a pure M-estimation problem (n.b.,
pure M-estimation is a Frequentist method). The merit of this reformulation is that the
robustness measure (against measurement outliers) of the state estimator can be derived using
the minimax asymptotic variance of the M-estimator [71, Eq. (38)], instead of the minimax
posterior estimation error covariance. Therefore, strictly speaking, the state estimator proposed
in [71] is not a Kalman-type filter because at each time step, a pure M-estimation (rather than a
Bayesian estimation) problem is solved. Besides, the state estimator in [71, Eq. (21)] requires to
numerically solve a nonlinear root-finding problem.

In state estimation literature, another term "M-estimation-based Kalman filter" is popular,
which has not been rigorously defined as well. We complement it in Definition 3.

Definition 3. A Kalman-type filter is called M-estimation-based if an influence function is
applied over the innovation vector (or transformed/normalized innovation vector) to limit the
"influence" that a wild measurement may bring. See, e.g., Theorem 8 in this thesis. Therefore,
a Kalman-type filter is said to be measurement-outlier-robust if it is M-estimation-based. □

In this sense, the state estimator proposed in Theorem 8 of this thesis is a M-estimation-based
Kalman-type filter. Likewise, the state estimator proposed in [97] is also a M-estimation-based
Kalman-type filter. However, state estimators in [71,95] are not M-estimation-based Kalman-type
filters, because they are pure Frequentist M-estimators, and therefore, not Bayesian Kalman-type.
In this sense, names "M-type filter" and "M-type state estimator" should be more reasonable.



Appendix B
Proofs and Derivations in Chapter 2

B.1 Derive (2.5)

By (2.1), we have 
xk = Fk−1xk−1 +Gk−1wk−1,

yk =HkFk−1xk−1 +HkGk−1wk−1 + vk,

namely,

zk =

 xk

yk


=

 Fk−1

HkFk−1

xk−1 +

 Gk−1 0

HkGk−1 1


 wk−1

vk

 .
Since wk−1 and vk are mutually independent and Gaussian, the augmented vector [w⊤

k−1,v
⊤
k ]

⊤

is jointly Gaussian with mean vector of [0⊤,0⊤]⊤ and covariance of

E

 wk−1

vk


 wk−1

vk


⊤

=

 Qk−1 0

0 Rk

 .
Therefore, given xk−1, zk is jointly Gaussian with mean of Fk−1

HkFk−1

xk−1 +

 Gk−1 0

HkGk−1 1


 0

0

 ,
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and covariance of

M

 Qk−1 0

0 Rk

M⊤

= M

 Q
1
2
k−1 0

0 R
1
2
k


 Q

1
2
k−1 0

0 R
1
2
k


⊤

M⊤

= M

 Q
1
2
k−1 0

0 R
1
2
k


M

 Q
1
2
k−1 0

0 R
1
2
k




⊤

where

M :=

 Gk−1 0

HkGk−1 1

 .
In summary,

P̄zk|xk−1
= Nn+m


 Fk−1

HkFk−1

xk−1, Σ
◦
k


where

Σ◦
k =

 Gk−1Q
1
2
k−1 0

HkGk−1Q
1
2
k−1 R

1
2
k


 Gk−1Q

1
2
k−1 0

HkGk−1Q
1
2
k−1 R

1
2
k


⊤

,

which is (2.5).

B.2 Proof of Theorem 1

Since the optimal estimator ϕ(·) is parameterized by Ak and bk, and the distributions Pzk|Yk−1

in (2.11) are parameterized by ck and Sk, (2.4) is equivalent to the left-hand side of the equality
in (2.13).

Let Sxx,k := E (xk − cx,k) (xk − cx,k)⊤, S⊤
yx,k = Sxy,k := E (xk − cx,k) (yk − cy,k)⊤, Syy,k :=

E (yk − cy,k) (yk − cy,k)⊤ where the three expectations are taken over Pxk|Yk−1
, Pxk,yk|Yk−1

, and
Pyk|Yk−1

, respectively. As a result, in particular by the definitions of ck and Sk in (2.11), we
have

Sk =

 Sxx,k Sxy,k

Syx,k Syy,k

 .
Since Σk ≻ 0, we have Sk ≻ 0. By Schur complement, we further have Sxx,k ≻ 0 and Syy,k ≻ 0.
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This means that (2.15) is equivalent to 
Sk ⪯ θ2Σk,

Sk ⪰ θ1Σk.

(B.1)

With the affine optimal estimator (2.12), straightforward algebraic manipulations on the objective
function of (2.4), i.e., TrE [xk − (Akyk + bk)] [xk − (Akyk + bk)]

⊤, gives

min
Ak,bk

max
ck,Sk

〈
I,Sxx,k + cx,kc

⊤
x,k

〉
+
〈
A⊤

kAk,Syy,k + cy,kc
⊤
y,k

〉
−
〈
Ak,Sxy,k + cx,kc

⊤
y,k

〉
−
〈
A⊤

k ,Syx,k + cy,kc
⊤
x,k

〉
+ 2 ⟨bk,Akcy,k − cx,k⟩+ ⟨bk, bk⟩ .

(B.2)
For details of derivation, see Appendix B.3. Hence, the problem (2.4) can be reformulated as
solving (B.2) subject to (2.11). Since (B.2) is constraint-free, quadratic and convex in terms of
bk, the optimal solution of bk is obtained by the first-order optimality condition, i.e.,

b⋆k = cx,k −Akcy,k. (B.3)

This equality simplifies (B.2) to

min
Ak

max
Sk

⟨I,Sxx,k⟩+
〈
A⊤

kAk,Syy,k

〉
− ⟨Ak,Sxy,k⟩ −

〈
A⊤

k ,Syx,k

〉
, (B.4)

during which the following fact is used: for any deterministic matrices A, B, and C, we have

⟨A,B +C⟩ = ⟨A,B⟩+ ⟨A,C⟩ .

The objective function (B.4) can be further written in a compact form as

min
Ak

max
Sk

〈 I −Ak

−A⊤
k A⊤

kAk

,Sk

〉
, (B.5)

which is subject to (2.11). To avoid notational clutter, we rewrite (2.11) as
(ck − µk)

⊤Σ−1
k (ck − µk) ≤ θ3,

Sk + (ck − µk) (ck − µk)
⊤ ⪯ θ2Σk,

Sk + (ck − µk) (ck − µk)
⊤ ⪰ θ1Σk.

(B.6)

Since the ambiguity set (B.6) is convex and compact in terms of (ck,Sk) and the objective
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function in (B.5) 〈 I −Ak

−A⊤
k A⊤

kAk

,Sk

〉

is linear (thus concave) in Sk and positive-definite quadratic (thus convex) in Ak, von Neumann’s
min-max theorem (i.e., saddle point theorem) holds, i.e.,

min
Ak

max
Sk

〈 I −Ak

−A⊤
k A⊤

kAk

,Sk

〉
= max

Sk

min
Ak

〈 I −Ak

−A⊤
k A⊤

kAk

,Sk

〉
.

This gives the min-max equality (2.13). In view that the optimization problem (B.5) over Ak is
constraint-free, differentiable, and convex, the first-order optimality condition, i.e.,

AkSyy,k − Sxy,k = 0,

gives the optimal solution of Ak as

A⋆
k = Sxy,k · S−1

yy,k. (B.7)

This equality simplifies (B.5) to (2.14). Note that the objective function (2.14) is irrelevant to
ck. Therefore, to maximize (2.14), the larger the feasible set of Sk, the better. This gives the
optimal solution of ck as

c⋆k = µk. (B.8)

This equality simplifies (B.6) to (B.1), which is equivalent to (2.15). This completes the proof. □

B.3 Derive (B.2)

Note that all the expectations in this appendix are conditional on Yk−1: the involved distribution
is Pxk|Yk−1

, Pxk,yk|Yk−1
, or Pyk|Yk−1

, wherever it is needed. Recall that ck and Sk are conditioned
on Yk−1 but they are non-random in terms of xk and yk.

We have1

Sxx,k := E(xk − cx,k)(xk − cx,k)⊤

= Exkx
⊤
k − Exkc

⊤
x,k − cx,kEx⊤

k + cx,kc
⊤
x,k

= Exkx
⊤
k − cx,kc⊤x,k.

1To put it strict, we should write Sxx,k := E
{
(xk − cx,k)(xk − cx,k)⊤

∣∣Yk−1

}
and the expectation is taken

over Pxk|Yk−1
. However, to avoid notational clutter, we do not explicitly write the full forms of conditional

expectations. Always keeping in mind that all the expectations in this appendix are conditional on Yk−1.



Chapter B. Proofs and Derivations in Chapter 2 121

Hence,
Exkx

⊤
k = Sxx,k + cx,kc

⊤
x,k.

Similarly, we have
Exky

⊤
k = Sxy,k + cx,kc

⊤
y,k,

Eykx
⊤
k = Syx,k + cy,kc

⊤
x,k,

and
Eyky

⊤
k = Syy,k + cy,kc

⊤
y,k.

As a result, we have

E [xk − (Akyk + bk)] [xk − (Akyk + bk)]
⊤

= Exkx
⊤
k − E [Akyk + bk] [xk]

⊤ − E [xk] [Akyk + bk]
⊤ + E [Akyk + bk] [Akyk + bk]

⊤

= Exkx
⊤
k −Ak · (Eykx

⊤
k )− Ebkx⊤

k − (Exky
⊤
k )A

⊤
k − Exkb

⊤
k +Ak · (Eyky

⊤
k ) ·A⊤

k +

Ak · (Eykb
⊤
k ) + (Ebky⊤

k )A
⊤
k + Ebkb⊤k

= Exkx
⊤
k +Ak(Eyky

⊤
k )A

⊤
k − (Exky

⊤
k )A

⊤
k −Ak(Eykx

⊤
k )− Ebkx⊤

k − Exkb
⊤
k +

Ak(Eykb
⊤
k ) + (Ebky⊤

k )A
⊤
k + Ebkb⊤k

= Exkx
⊤
k +Ak(Eyky

⊤
k )A

⊤
k − (Exky

⊤
k )A

⊤
k −Ak(Eykx

⊤
k ) + E (bk) (Akyk − xk)

⊤+

E (Akyk − xk) (bk)
⊤ + Ebkb⊤k

= (Sxx,k + cx,kc
⊤
x,k) +Ak(Syy,k + cy,kc

⊤
y,k)A

⊤
k − (Sxy,k + cx,kc

⊤
y,k)A

⊤
k −

Ak(Syx,k + cy,kc
⊤
x,k) + 2(Akcy,k − cx,k)b⊤k + bkb

⊤
k .

(B.9)

Applying the trace operator on the both sides of (B.9) gives (B.2). Note that

Tr
[
Ak(Syy,k + cy,kc

⊤
y,k)A

⊤
k

]
= Tr

[
A⊤

kAk(Syy,k + cy,kc
⊤
y,k)
]
.

B.4 Proof of Theorem 2

The NSDP (2.14) subject to (2.15) is equivalent to

max
Sk

Tr
[
Sxx,k − Sxy,kS

−1
yy,kSyx,k

]
(B.10)
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subject to (B.1). Let f(Sk) := Tr
[
Sxx,k − Sxy,kS

−1
yy,kSyx,k

]
. The gradient of f(Sk) with respect

to Sk admits

∇Sk
f(Sk) =

 I −Sxy,kS
−1
yy,k

−S−1
yy,kSyx,k S−1

yy,kSyx,kSxy,kS
−1
yy,k

 . (B.11)

Since the top left block of ∇Sk
f(Sk) (i.e., I) is positive definite and its Schur complement is

S−1
yy,kSyx,kSxy,kS

−1
yy,k − S

−1
yy,kSyx,kI

−1Sxy,kS
−1
yy,k = 0 ⪰ 0,

we have ∇Sk
f(Sk) ⪰ 0, i.e., positive semidefinite. This means that f(Sk) is a nondecreasing

function with respect to Sk. Therefore, if we assume that S⋆
k solves the NSDP (B.10) subject to

(B.1), we must have S⋆
k = θ2Σk. This completes the proof; see also Remarks 8 and 9 below. □

Remark 8. In the proof of Theorem 2, the following facts are involved.

1) For a block matrix M :=

 A B

C D

, if A is invertible, then the Schur complement of block

A of matrix M is defined as M/A := D − CA−1B. Further, if M is symmetric (i.e.,
C = B⊤) and A ≻ 0, then the matrix M ⪰ 0 if and only if M/A ⪰ 0.

2) If S is a symmetric and invertible variable matrix and A is constant with respect to S,
then the following identities hold: ∇S Tr [S] = I; ∇S Tr [AS] = ∇S Tr [SA] = A⊤; and
∇S Tr

[
A⊤S−1A

]
= ∇S Tr

[
S−1AA⊤] = −(S−1)⊤(AA⊤)⊤(S−1)⊤ = −S−1AA⊤S−1. □

Remark 9. Another proof to Theorem 2 can be obtained by analogy with Theorem 7 and
Appendix B.9. □

B.5 Proof of Theorem 3

Given a specific measurement y, the conditional mean (i.e., optimal estimate) of x is

x̂ =

∫
x
p(x,y)

p(y)
dx

= [p(y)]−1

∫
xp(y|x)p(x)dx− x̄+ x̄

= [p(y)]−1

∫
(x− x̄)p(y|x)p(x)dx+ x̄

= [p(y)]−1M

∫
pv(y −Hx)M−1(x− x̄)p(x)dx+ x̄.

Since the prior distribution of x is Gaussian, we have

−M−1(x− x̄)p(x) = dp(x)

dx
,
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giving

x̂ = x̄−M [p(y)]−1

∫
pv(y −Hx)

dp(x)

dx
dx.

By partial integration, we have

x̂ = x̄+M [p(y)]−1

∫
∂pv(y −Hx)

∂x
p(x)dx

= x̄−MH⊤[p(y)]−1

∫
∂pv(y −Hx)

∂y
p(x)dx

= x̄−MH⊤[p(y)]−1

∫
∂p(x,y)

∂y
dx

= x̄−MH⊤[p(y)]−1dp(y)

dy

= x̄+MH⊤
[
−d ln p(y)

dy

]
.

Furthermore, the conditional covariance of the estimation error, which is evaluated over Px|y, is

E
{
(x̂− x)(· · · )⊤

∣∣y} = E
{
(x̄− x)(· · · )⊤

∣∣y}− E
{
(x̂− x̄)(· · · )⊤

∣∣y}
= E

{
(x̄− x)(· · · )⊤

∣∣y}−MH⊤
[
−d ln p(y)

dy

]
[· · · ]⊤HM .

Since u = S−1/2(y −Hx̄), we have

pu(µ) = py(S
1/2µ+Hx̄) · det

[
d(S1/2µ+Hx̄)

dµ

]
= py(S

1/2µ+Hx̄) · det(S1/2).

As a result,

−d ln pu(µ)

dµ
= −d ln py(S

1/2µ+Hx̄)

dµ
= −S1/2d ln py(y)

dy
,

implying

−d ln py(y)

dy
= S−1/2[−d ln pu(µ)

dµ
].

Therefore,

[−d ln py(y)

dy
][· · · ]⊤ = S−1/2[−d ln pu(µ)

dµ
][· · · ]⊤S−1/2.

Note that both −d ln py(y)
dy and −d ln pu(µ)

dµ are functions of y. Hence, if y were not specified,

−d ln py(y)
dy

∣∣∣
y=y

2 and −d ln pu(µ)
dµ

∣∣∣
y=y

would be functions of the random vector y. Meanwhile,

−d ln pu(µ)
dµ is also a function of µ. Therefore, when y were not specified, µ := y −Hx̄ were not

2The notation −d ln py(y)

dy

∣∣∣
y=y

means y is replaced with y in − d ln p(y)
dy

so that −d ln py(y)

dy

∣∣∣
y=y

is a function of

the random vector y.
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specified as well, and −d ln pu(µ)
dµ

∣∣∣
µ=u

would also be a function of the random vector u.

Consequently, the optimal estimator x̂ of x would be a function of the random vector y: i.e.,

x̂ = x̄+MH⊤
[
−d ln p(y)

dy

]
y=y

,

and the associated estimation error covariance conditioned on y

E
{
(x̂− x)(· · · )⊤

∣∣∣y} = E
{
(x̄− x)(· · · )⊤

∣∣∣y}−MH⊤
[
−d ln p(y)

dy

]
y=y

[
−d ln p(y)

dy

]⊤
y=y

HM .

By noting that

E

{
[p(µ)]−1 d

2p(µ)

dµdµ⊤

∣∣∣∣
µ=u

}
=

∫
[p(µ)]−1 d

2p(µ)

dµdµ⊤ p(µ)dµ =

d2
∫
p(µ)dµ

dµdµ⊤ =
d21

dµdµ⊤ = 0,

we have

E

{
−d2 ln p(µ)

dµdµ⊤

∣∣∣∣
µ=u

}

= −E

{
[p(µ)]−1 d2p(µ)

dµdµ⊤

∣∣∣∣
µ=u

}
+ E

 [p(µ)]−2

[
−dp(µ)

dµ

] [
−dp(µ)

dµ

]⊤∣∣∣∣∣
µ=u


= E


[
−d ln p(µ)

dµ

] [
−d ln p(µ)

dµ

]⊤∣∣∣∣∣
µ=u

 ,

where the expectations are taken over Pu. Combining the results above, we have

x̂ = x̄+MH⊤S−1/2

[
−d ln pu(µ)

dµ

]
µ=u

,

and the associated estimation error covariance, evaluated over Px,u,

E(x̂− x)(x̂− x)⊤ = EyEx|y
{
(x̂− x)(· · · )⊤

∣∣y}
=M −MH⊤S−1/2E


[
−d ln pu(µ)

dµ

] [
−d ln pu(µ)

dµ

]⊤∣∣∣∣∣
µ=u

S−1/2HM

=M −MH⊤S−1/2E

{[
−d2 ln pu(µ)

dµdµ⊤

]
µ=u

}
S−1/2HM .

The expectations inside of the last two lines are taken over Pu. This completes the proof. □
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B.6 Proof of Lemma 1

See [126, pp. 80] for the solution of p(µ). As a result, minE
[
− d2

dµ2 ln p(µ)
]
=
∫K
−K p(µ)dµ =

(1 − ϵ)
∫K
−K dΦ(µ) = (1 − ϵ)[1 − 2Φ(−K)]. For any given ϵ, the value of K can be found

in [126, Table I] or [55, Exhibit 4.3]. □

B.7 Proof of Lemma 2

See [126, pp. 91] for the solution of p(µ). As a result,

minE
[
− d2

dµ2
ln p(µ)

]
= 2×

[∫ a

0

1

2

c2

cos2(12cµ)
p(µ)dµ+

∫ b

a
p(µ)dµ

]

= 2

[
1

2

c2

cos2(12ca)
p(a)

∫ a

0
dµ+

∫ b

a
dΦ(µ)

]
.

For any given 0 ≤ ϵ ≲ 0.0303, the values of a, b, and c can be found in [126, Table II]
or [55, Exhibit 4.6]. □

B.8 Proof of Theorem 6

The squared constraint Tr[Σx +M − 2(M
1
2ΣxM

1
2 )

1
2 ] ≤ θ2x is convex and compact, so is the

squared constraint for Σv (as R ≻ 0) [69]. Therefore, the following equivalent feasible set is
convex and also compact.

Tr

[
Σx +M − 2

(
M

1
2ΣxM

1
2

) 1
2

]
≤ θ2x

Tr

[
Σv +R− 2

(
R

1
2ΣvR

1
2

) 1
2

]
≤ θ2v

Σx ⪰ 0

Σv ≻ 0.

(B.12)

Due to Σv ≻ 0, the existence of the inverse in the objective function (2.60) is guaranteed. As
the trace of the objective (2.60) is continuous, smooth (i.e., differentiable), and joint concave in
terms of Σx and Σv, the problem (2.60) subject to (2.61) is solvable (i.e., the optimal solutions
exist and are finite).

In order to simplify the objective function, let U ⪰ ΣxH
⊤(HΣxH

⊤ +Σv)
−1HΣx ⪰ 0. By

Schur complement, it is equivalent to require U ΣxH
⊤

HΣx HΣxH
⊤ +Σv

 ⪰ 0.
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In order to simplify the constraints, let Vx ⪯ (M
1
2ΣxM

1
2 )

1
2 , i.e., V 2

x ⪯M
1
2ΣxM

1
2 . By Schur

complement, it is equivalent to require M 1
2ΣxM

1
2 Vx

Vx I

 ⪰ 0.

Likewise, let Vv ⪯ (R
1
2ΣvR

1
2 )

1
2 , i.e., V 2

v ⪯ R
1
2ΣvR

1
2 . By Schur complement, it is equivalent to

require  R 1
2ΣvR

1
2 Vv

Vv I

 ⪰ 0.

Note that M
1
2ΣxM

1
2 ⪰ 0 and R

1
2ΣvR

1
2 ⪰ 0. □

B.9 Proof of Theorem 7

In order to simplify the objective function, let U ⪯ Σx −ΣxH
⊤(HΣxH

⊤ +Σv)
−1HΣx · imin

µ .
By Schur complement, the problem (2.64) subject to (2.65) is equivalent to

max
Σx,Σv ,U

TrU ,

subject to 

 (Σx −U)/imin
µ ΣxH

⊤

HΣx HΣxH
⊤ +Σv

 ⪰ 0

U ⪰ 0

Σx ⪯ θ2,xM

Σx ⪰ θ1,xM

Σv ⪯ θ2,vR

Σv ⪰ θ1,vR ≻ 0

Σx ⪰ 0

Σv ≻ 0.

Namely,  U/imin
µ 0

0 0

 ⪯
 Σx/i

min
µ ΣxH

⊤

HΣx HΣxH
⊤ +Σv

 .
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Since I ≻ 0 and I/imin
µ −H(H⊤H)−1H⊤ ⪰ I −H(H⊤H)−1H⊤ ⪰ 0, by Schur complement,

we have

dTr

 Σx/i
min
µ ΣxH

⊤

HΣx HΣxH
⊤ +Σv


dΣx

=

 I/imin
µ H

H⊤ H⊤H

 ⪰ 0,

and

dTr

 Σx/i
min
µ ΣxH

⊤

HΣx HΣxH
⊤ +Σv


dΣv

=

 0 0

0 I

 ⪰ 0,

implying the upper bound of

 Σx/i
min
µ ΣxH

⊤

HΣx HΣxH
⊤ +Σv

 is reached by the upper bounds of Σx

and Σv. Note that H(H⊤H)−1H⊤ is an idempotent matrix (a.k.a. projection matrix in linear
regression) whose eigenvalues only contain zeros and ones (therefore, I −H(H⊤H)−1H⊤ ⪰ 0).

As a result,  U/imin
µ 0

0 0

 ⪯
 θ2,xM/imin

µ θ2,xMH⊤

Hθ2,xM Hθ2,xMH⊤ + θ2,vR

 ,
giving  (θ2,xM −U)/imin

µ θ2,xMH⊤

Hθ2,xM Hθ2,xMH⊤ + θ2,vR

 ⪰ 0.

Therefore, the upper bound of U is

θ2,xM − θ22,xMH⊤(Hθ2,xMH⊤ + θ2,vR)−1HM · imin
µ ,

reached by Σx = θ2,xM and Σv = θ2,vR. □

B.10 Proof of Theorem 8

By noting that ψ(·) := − d
dµ ln p(µ) and recalling (2.57) and (2.58) in the worst case, (2.67) and

(2.68) are immediate. For the worst-case distribution of v, it is not simply Nm(c∗v,Σ
∗
v) where

c∗v = 0 because we have v = S
1
2u−H(x− x̄). From Highlight 1, the distribution of v suffers

from two types of deviations, i.e., outlier-related and outlier-unrelated. Nm(c∗v,Σ
∗
v) is just the

worst-case distribution for the outlier-unrelated part. The integrated worst-case distribution
P∗
v of v is determined by the convolution of P∗

u and P∗
x through v∗ = S∗ 1

2u∗ −H(x∗ − x̄). It
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is non-trivial to explicitly compute this convolution. However, fortunately, we do not need to
pursue its exact expression (or numerical value). The other statements are straightforward from
Lemmas 1, 2 and Theorems 3, 4, 5, 6, 7. □

B.11 Proof of Theorem 9

The weak min-max property admits

max
P∈Fx,y(θ)

min
ϕ∈H′

y

V (ϕ,P) ≤ min
ϕ∈H′

y

max
P∈Fx,y(θ)

V (ϕ,P).

Supposing the estimator ϕ∗ and the worst case distribution P∗ solve the max-min problem which
are available from Theorem 8, we have V (ϕ∗,P∗) ≤ min

ϕ∈H′
y

max
P∈Fx,y(θ)

V (ϕ,P).

In fact, (ϕ∗,P∗) forms a saddle point of V (ϕ,P) because there is an one-to-one correspondence
between ϕ∗ and P∗:

max
P∈Fx,y(θ)

V (ϕ∗,P) = V (ϕ∗,P∗) = min
ϕ∈H′

y

V (ϕ,P∗).

Hence,
min
ϕ∈H′

y

max
P∈Fx,y(θ)

V (ϕ,P) ≤ max
P∈Fx,y(θ)

V (ϕ∗,P) = V (ϕ∗,P∗).

As a result,
min
ϕ∈H′

y

max
P∈Fx,y(θ)

V (ϕ,P) = V (ϕ∗,P∗).

This shows the strong min-max property, completing the proof. □



Appendix C
Proofs in Chapter 3

C.1 Proof of Lemma 3

This lemma is a special case of [123, Theorem 1.3]. With the facts in [123, Remark 1.12],
the statements in this lemma can be obtained. However, the proof of [123, Theorem 1.3] is
rather complicated because it dealt with a more general problem and conducted many advanced
analyses; it is not motivational for the contexts of this thesis. Below gives a new and concise
proof because it is necessary for insights in Fig. 3.1.

First, by noting that p(xQ) = q(x) =
∑N

i=1 qiδxi(x) and
∫
qiδxi(x)dx = qi, we have

inf
π(xP,xQ)

∫∫
∥xP − xQ∥π(xP,xQ)dxPdxQ

= inf
I(xQ|xP)

∫∫
∥xP − xQ∥

I(xQ|xP)p(xP)

p(xQ)
p(xQ)dxPdxQ

= inf
I(xi|xP)

N∑
i=1

∫
∥xP − xi∥I(x

i|xP)p(xP)

p(xQ)|xQ=xi

qidxP

= inf
I(xi|xP)

N∑
i=1

∫
∥xP − xi∥I(xi|xP)p(xP)dxP

= inf
I(xi|x)

N∑
i=1

∫
∥x− xi∥I(xi|x)p(x)dx.

The first equality holds because when reformulating the Wasserstein distance, the marginals Px

and Qx are fixed. The infimum optimization problem above has a clear physical meaning in
transport theory: we aim to move all the resources (that are continuously distributed) in the
whole region to some fixed facilities {xi}i=1,2,...,N . At every point x, the normalized amount
of resources are p(x). The proportion of p(x) to be moved from x to the facility xi is I(xi|x).
The cost to move every unit of resources from x to xi is ∥x− xi∥. Therefore, the Wasserstein
distance denotes the minimum transport cost to move a distribution from one support set to

129
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another. Since I(xi|x) are conditional distributions, implicit constraints are

∫
I(xi|x)p(x)dx = qi, ∀i ∈ [N ],

N∑
i=1

I(xi|x) = 1, ∀x,

I(xi|x) ≥ 0, ∀i ∈ [N ], ∀x.

Second, we write the Lagrange dual problem

sup
λi

inf
I(xi|x)

N∑
i=1

∫
∥x− xi∥I(xi|x)p(x)dx+

N∑
i=1

λi

[
qi −

∫
p(x)I(xi|x)dx

]
s.t.

N∑
i=1

I(xi|x) = 1, ∀x,

I(xi|x) ≥ 0, ∀i ∈ [N ], ∀x.

The sup-inf objective function also writes

sup
λi

inf
I(xi|x)

∫ N∑
i=1

(∥x− xi∥ − λi)I(xi|x)p(x)dx+
N∑
i=1

λiqi.

Now we recall the physical meaning of I(xi|x) from perspective of optimal transport: it denotes
the proportion of p(x) to be moved to xi; i.e., I(xi|x) are weights. As a result, we have

min
i
{∥x− xi∥ − λi} ≤

N∑
i=1

(∥x− xi∥ − λi)I(xi|x), ∀x,

where I(xi|x) = 1 for the i letting the equality strictly hold, and I(xi|x) = 0 otherwise. The
above inequality holds because the weighted mean of a vector is no less than the minimum
element in this vector. This gives the dual problem

sup
λi

∫
min
i∈[N ]
{∥x− xi∥ − λi}p(x)dx+

N∑
i=1

λiqi.

Note that the strong duality holds because the primal optimization problem is convex, and the
relative interior point p(xQ) satisfies the Slater’s condition: when p(xP) := p(xQ), the optimal
solution I(xi|xi) = 1 and I(xi|xj) = 0,∀j ̸= i. Since the value of I(xi|x) is either one or zero,
all p(x) near xi are moved to xi, and the cumulative at xi is qi (n.b.,

∫
I(xi|x)p(x)dx = qi).

This implies a region-partition operation: the sub-region Ci is defined by such a set of x that
satisfies ∥x− xi∥ − λi ≤ ∥x− xj∥ − λj , ∀j ̸= i. In other words,

∫
Ci
p(x)dx = qi, ∀i ∈ [N ]. □
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C.2 Proof of Theorem 15

We first consider the case when θ > 0. Let g(x,λ) := mini∈[N ]

{
∥x− xi∥ − λi

}
. The Lagrange

dual problem is

min
v0≥0,v1

max
p(x)

∫
−p(x) ln p(x)dx+ v0·{

θ −max
λ

[∫
p(x) min

i∈[N ]

{
∥x− xi∥ − λi

}
dx+

N∑
i=1

qiλi

]}

+ v1

[
1−

∫
p(x)dx

]
= min

v0≥0,v1
max
p(x)

min
λ

v0 ·

(
θ −

N∑
i=1

qiλi

)
+ v1 +

∫
−[ln p(x) + v0g(x,λ) + v1]p(x)dx.

For every two bounded functions f1 and f2 that have the same support, min(f1 + f2) ≥
min f1 +min f2. Therefore, it is easy to verify that the objective function is convex in terms of
λ and concave in terms of p(x) by the original definitions of convexity and concavity. Since the
objective function is concave and constraint-free in terms of p(x), we use the varitional method
to maximize it over p(x). Let L[p(x)] :=

∫
−[ln p(x) + v0g(x,λ) + v1]p(x)dx be a functional of

p(x). The variation of L[p(x)] is

δL[p(x)] = ∂L[p(x) + ϵh(x)]

∂ϵ

∣∣∣∣
ϵ=0

=

∫
− [ln p(x) + 1 + v0g(x,λ) + v1]h(x)dx,

where h(x) ∈ L1 is an arbitrary function.

Let δL[p(x)] = 0 and according to the fundamental lemma of calculus of variations, we have

ln p(x) + 1 + v0g(x,λ) + v1 ≡ 0,

almost everywhere. This gives the form of p(x) in (3.15). Substituting p(x) back into the
objective of the Lagrange dual problem gives (3.16). The strong duality holds because (3.14) is
concave and Qx is a relative interior point at which the inequality constraint in (3.14) is strictly
satisfied (due to θ > 0) and the equality constraint in (3.14) simultaneously holds (i.e., the
Slater’s conditions are met).

When θ = 0, the gradient in (3.18) vanishes if and only if Px = Qx. Therefore, (3.15) and (3.16)
also work for θ = 0. In summary, this theorem works for all θ ≥ 0. □
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C.3 Proof of Lemma 4

This lemma is a special case of [123, Theorem 1.3]. One can also prove it using the standard
Lagrange dual theory (cf. Appendix C.1). We do not give details due to necessity. □

C.4 Proof of Theorem 16

The proof is straightforward by writing the Lagrange dual problem and differentiating with
respect to Pij . The strong duality holds: (3.24) is concave and {P 0

ij}∀i,∀j is assumed to be a
relative interior point satisfying the Slater’s conditions. In the special case when M = N , and
Px and Qx have the same support, P 0

ij can be constructed as follow:

P 0
ij =


qi, if i = j,

0, otherwise,

which is resulted from letting Px := Qx. In a general case when M ̸= N or they have
different supports, to guarantee the existence of P 0

ij , we must let θ be strictly larger than

min
Pij

N∑
i=1

M∑
j=1

∥xi − xj∥ · Pij over all Pij such that
∑M

j=1 Pij = qi, ∀i ∈ [N ]. Unlike Theorem 15,

we additionally require the existence of P 0
ij , because the reference distribution Qx in this case is

no longer guaranteed to be a relative interior point that satisfies the Slater’s conditions. □

C.5 Proof of Theorem 18

If θ = 0, the maximum entropy distribution solving (3.33) is q itself. Below discusses the case
when θ > 0. The Lagrange dual problem of (3.33) is

min
λ0≥0,λ1

max
pi

N∑
i=1

−pi ln pi + λ0 ·

[
θ −

N∑
i=1

pi ln (
pi
qi
)

]
+ λ1 ·

[
1−

N∑
i=1

pi

]
.

It is concave, smooth, and constraint-free with respect to pi. Therefore, the optimal solution of
pi is obtained by the first-order optimality condition, i.e.,

−(λ0 + 1) · [ln(pi) + 1] + λ0 ln(qi)− λ1 = 0.

This gives (3.34). Substituting (3.34) back into the objective of the Lagrange dual problem, we
have (3.35). Since (3.33) is concave, and q is a relative interior point in the feasible region of
(3.33) such that the inequality is strictly satisfied (due to θ > 0) and the equality is met, the
strong duality holds due to the Slater’s condition. Namely, if λ0 and λ1 solve (3.35), pi in (3.34)
solves (3.33). When θ = 0, the gradient (3.36) vanishes if and only if p = q; i.e., (3.34) and
(3.35) also work for the case when θ = 0. In summary, this theorem works for all θ ≥ 0. □
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